A133825 Triangle whose rows are sequences of increasing and decreasing triangular numbers: 1; 1,3,1; 1,3,6,3,1; ... .
1, 1, 3, 1, 1, 3, 6, 3, 1, 1, 3, 6, 10, 6, 3, 1, 1, 3, 6, 10, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 36, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10
Offset: 0
Examples
Triangle starts 1; 1, 3, 1; 1, 3, 6, 3, 1; 1, 3, 6, 10, 6, 3, 1; From _Boris Putievskiy_, Jan 13 2013: (Start) The start of the sequence as table: 1...1...1...1...1...1... 1...3...3...3...3...3... 1...3...6...6...6...6... 1...3...6..10..10..10... 1...3...6..10..15..15... 1...3...6..10..15..21... 1...3...6..10..15..21... . . . The start of the sequence as triangle array read by rows: 1, 1, 3, 1, 1, 3, 6, 3, 1, 1, 3, 6, 10, 6, 3, 1, 1, 3, 6, 10, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 15, 10, 6, 3, 1, 1, 3, 6, 10, 15, 21, 28, 21, 15, 10, 6, 3, 1, . . . Row number k contains 2*k-1 numbers 1,3,...,k*(k-1)/2,k*(k+1)/2,k*(k-1)/2,...,3,1. (End)
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Mathematica
Module[{nn=10,ac},ac=Accumulate[Range[nn]];Table[Join[Take[ ac,n],Reverse[ Take[ac,n-1]]],{n,nn}]]//Flatten (* Harvey P. Dale, Apr 18 2019 *)
Formula
O.g.f.: (1+qx)/((1-x)(1-qx)^2(1-q^2x)) = 1 + x(1 + 3q + q^2) + x^2(1 + 3q + 6q^2 + 3q^3 + q^4) + ... .
From Boris Putievskiy, Jan 13 2013: (Start)
a(n) = z*(z+1)/2, where z = floor(sqrt(n-1)) - |n- floor(sqrt(n-1))^2- floor(sqrt(n-1))-1| +1. (End)
Comments