A124258 Triangle whose rows are sequences of increasing and decreasing squares: 1; 1,4,1; 1,4,9,4,1; ...
1, 1, 4, 1, 1, 4, 9, 4, 1, 1, 4, 9, 16, 9, 4, 1, 1, 4, 9, 16, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 36, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 36, 49, 36, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 36, 49, 64, 49, 36, 25, 16, 9, 4, 1, 1, 4, 9, 16, 25, 36, 49, 64, 81, 64, 49, 36, 25, 16, 9, 4, 1, 1, 4, 9, 16
Offset: 1
Examples
Triangle starts 1; 1, 4, 1; 1, 4, 9, 4, 1: 1, 4, 9, 16, 9, 4, 1: From _Boris Putievskiy_, Jan 13 2013: (Start) The start of the sequence as table: 1...1...1...1...1...1... 1...4...4...4...4...4... 1...4...9...9...9...9... 1...4...9..16..16..16... 1...4...9..16..25..25... 1...4...9..16..25..36... ... The start of the sequence as triangle array read by rows: 1; 1, 4, 1; 1, 4, 9, 4, 1; 1, 4, 9, 16, 9, 4, 1; 1, 4, 9, 16, 25, 16, 9, 4, 1; 1, 4, 9, 16, 25, 36, 25, 16, 9, 4, 1; ... Row number k contains 2*k-1 numbers 1,4,...,(k-1)^2,k^2,(k-1)^2,...,4,1. (End)
Links
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Maple
A003983 := proc(n,k) min(n,k) ; end: A124258 := proc(n,k) A003983(n,k)^2 ; end: for d from 1 to 20 by 2 do for c from 1 to d do printf("%d, ",A124258(d+1-c,c)) ; od: od: # R. J. Mathar, Sep 21 2007 # second Maple program: T:= n-> i^2$i=1..n, (n-i)^2$i=1..n-1: seq(T(n), n=1..10); # Alois P. Heinz, Feb 15 2022
-
Mathematica
Flatten[Table[Join[Range[n]^2,Range[n-1,1,-1]^2],{n,10}]] (* Harvey P. Dale, Jun 14 2015 *)
Formula
O.g.f.: (1+qx)^2/((1-x)(1-qx)^2(1-q^2x)) = 1 + x(1 + 4q + q^2) + x^2(1 + 4q + 9q^2 + 4q^3 + q^4) + ... . - Peter Bala, Sep 25 2007
From Boris Putievskiy, Jan 13 2013: (Start)
a(n) = (A004737(n))^2.
a(n) = (floor(sqrt(n-1)) - |n- floor(sqrt(n-1))^2- floor(sqrt(n-1))-1| +1)^2. (End)
Extensions
More terms from R. J. Mathar, Sep 21 2007
Edited by N. J. A. Sloane, Jun 30 at the suggestion of R. J. Mathar
Comments