cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133847 a(n)*a(n-9) = a(n-1)*a(n-8)+a(n-4)+a(n-5) with initial terms a(1)=...=a(9)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 13, 21, 33, 49, 169, 293, 421, 553, 823, 1365, 2179, 3265, 11289, 19585, 28153, 36993, 55081, 91393, 145929, 218689, 756163, 1311861, 1885783, 2477929, 3689557, 6121925, 9775033, 14648881, 50651601, 87875061
Offset: 1

Views

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=9 then RETURN(1); else RETURN((a(n-1)*a(n-8)+a(n-4)+a(n-5))/a(n-9)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==a[9]==1,a[n]==(a[n-1]a[n-8]+a[n-4]+a[n-5])/a[n-9]},a,{n,50}] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,68,0,0,0,0,0,0,0,-68,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,3,5,7,9,13,21,33,49,169,293,421,553,823,1365,2179},50] (* Harvey P. Dale, Jan 14 2016 *)
  • PARI
    a(k=9, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 -67*x^8 -65*x^9 -63*x^10 -61*x^11 -59*x^12 -55*x^13 -47*x^14 -35*x^15 +49*x^16 +33*x^17 +21*x^18 +13*x^19 +9*x^20 +7*x^21 +5*x^22 +3*x^23) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +x^4)*(1 -67*x^8 +x^16)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 68*(u(n-8)-u(n-16))+u(n-24) with the initial 24 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 -67*x^8 -65*x^9 -63*x^10 -61*x^11 -59*x^12 -55*x^13 -47*x^14 -35*x^15 +49*x^16 +33*x^17 +21*x^18 +13*x^19 +9*x^20 +7*x^21 +5*x^22 +3*x^23) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +x^4)*(1 -67*x^8 +x^16)). - Colin Barker, Jul 18 2016