cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Emilie Hogan

Emilie Hogan's wiki page.

Emilie Hogan has authored 5 sequences.

A162672 Lunar product 19*n.

Original entry on oeis.org

0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150
Offset: 0

Author

Emilie Hogan, Dennis Hou, Kellen Myers and N. J. A. Sloane, Apr 09 2010

Keywords

Comments

Since 19 is the smallest lunar prime, this is a kind of lunar analog of the even numbers.
As the b-file shows, this sequence is not monotonic and contains repetitions.

Examples

			19 * 3 = 13, so 13 is a member. 1109 has just two divisors, 9 and 109, so 1109 is not a member.
		

Crossrefs

Formula

For a two-digit number n, the lunar product 19*n is obtained by putting a 1 in front of n.

Extensions

Entry revised by N. J. A. Sloane, May 28 2011, to correct errors in some of the comments

A133848 a(n)*a(n-11) = a(n-1)*a(n-10)+a(n-5)+a(n-6) with initial terms a(1)=...=a(11)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 11, 15, 23, 35, 51, 71, 239, 411, 587, 767, 951, 1325, 2075, 3201, 4703, 6581, 22185, 38165, 54521, 71253, 88361, 123141, 192889, 297605, 437289, 611941, 2062927, 3548881, 5069803, 6625693, 8216551, 11450719
Offset: 1

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=11 then RETURN(1); else RETURN((a(n-1)*a(n-10)+a(n-5)+a(n-6))/a(n-11)); fi; end;
  • Mathematica
    Rest@ CoefficientList[Series[x (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 - 93 x^10 - 91 x^11 - 89 x^12 - 87 x^13 - 85 x^14 - 83 x^15 - 79 x^16 - 71 x^17 - 59 x^18 - 43 x^19 + 71 x^20 + 51 x^21 + 35 x^22 + 23 x^23 + 15 x^24 + 11 x^25 + 9 x^26 + 7 x^27 + 5 x^28 + 3 x^29)/((1 - x) (1 + x) (1 - x + x^2 - x^3 + x^4) (1 + x + x^2 + x^3 + x^4) (1 - 93 x^10 + x^20)), {x, 0, 47}], x] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    a(k=11, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 -93*x^10 -91*x^11 -89*x^12 -87*x^13 -85*x^14 -83*x^15 -79*x^16 -71*x^17 -59*x^18 -43*x^19 +71*x^20 +51*x^21 +35*x^22 +23*x^23 +15*x^24 +11*x^25 +9*x^26 +7*x^27 +5*x^28 +3*x^29) / ((1 -x)*(1 +x)*(1 -x +x^2 -x^3 +x^4)*(1 +x +x^2 +x^3 +x^4)*(1 -93*x^10 +x^20)) + O(x^60)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 94*(u(n-10)-u(n-20))+u(n-30) with the initial 30 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 -93*x^10 -91*x^11 -89*x^12 -87*x^13 -85*x^14 -83*x^15 -79*x^16 -71*x^17 -59*x^18 -43*x^19 +71*x^20 +51*x^21 +35*x^22 +23*x^23 +15*x^24 +11*x^25 +9*x^26 +7*x^27 +5*x^28 +3*x^29) / ((1 -x)*(1 +x)*(1 -x +x^2 -x^3 +x^4)*(1 +x +x^2 +x^3 +x^4)*(1 -93*x^10 +x^20)). - Colin Barker, Jul 18 2016

A133846 a(n)*a(n-7) = a(n-1)a(n-6)+a(n-3)+a(n-4) with initial terms a(1)=...=a(7)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 111, 195, 283, 465, 831, 1381, 4969, 8741, 12697, 20885, 37353, 62101, 223471, 393121, 571051, 939331, 1680031, 2793151, 10051203, 17681675, 25684567, 42248981, 75564019, 125629681, 452080641, 795282225
Offset: 1

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=7 then RETURN(1); else RETURN((a(n-1)*a(n-6)+a(n-3)+a(n-4))/a(n-7)); fi; end;
  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,(g*b+e+d)/a}; Transpose[ NestList[ nxt,{1,1,1,1,1,1,1},40]][[1]] (* or *) LinearRecurrence[ {0,0,0,0,0,46,0,0,0,0,0,-46,0,0,0,0,0,1},{1,1,1,1,1,1,1,3,5,7,11,19,31,111,195,283,465,831},40] (* Harvey P. Dale, Aug 21 2014 *)
  • PARI
    a(k=7, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 -45*x^6 -43*x^7 -41*x^8 -39*x^9 -35*x^10 -27*x^11 +31*x^12 +19*x^13 +11*x^14 +7*x^15 +5*x^16 +3*x^17) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -45*x^6 +x^12)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 -45*x^6 -43*x^7 -41*x^8 -39*x^9 -35*x^10 -27*x^11 +31*x^12 +19*x^13 +11*x^14 +7*x^15 +5*x^16 +3*x^17) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -45*x^6 +x^12)). - Colin Barker, Jul 18 2016

A133854 a(n)*a(n-13) = a(n-1)*a(n-12)+a(n-6)+a(n-7) with initial terms a(1)=...=a(13)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 11, 13, 17, 25, 37, 53, 73, 97, 321, 549, 781, 1017, 1257, 1501, 1995, 2985, 4471, 6453, 8931, 11905, 39433, 67457, 95977, 124993, 154505, 184513, 245273, 367041, 549817, 793601, 1098393, 1464193, 4849891
Offset: 1

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=13 then RETURN(1); else RETURN((a(n-1)*a(n-12)+a(n-6)+a(n-7))/a(n-13)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]== a[8]== a[9]== a[10]== a[11]== a[12]==a[13]==1,a[n]==(a[n-1]a[n-12]+a[n-6]+ a[n-7])/ a[n-13]},a,{n,50}] (* Harvey P. Dale, Nov 24 2015 *)
  • PARI
    a(k=13, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 -123*x^12 -121*x^13 -119*x^14 -117*x^15 -115*x^16 -113*x^17 -111*x^18 -107*x^19 -99*x^20 -87*x^21 -71*x^22 -51*x^23 +97*x^24 +73*x^25 +53*x^26 +37*x^27 +25*x^28 +17*x^29 +13*x^30 +11*x^31 +9*x^32 +7*x^33 +5*x^34 +3*x^35) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)*(1 -x^2 +x^4)*(1 +11*x^6 -x^12)*(1 -11*x^6 -x^12)) + O(x^60)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 124*(u(n-12)-u(n-24))+u(n-36) with the initial 36 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 -123*x^12 -121*x^13 -119*x^14 -117*x^15 -115*x^16 -113*x^17 -111*x^18 -107*x^19 -99*x^20 -87*x^21 -71*x^22 -51*x^23 +97*x^24 +73*x^25 +53*x^26 +37*x^27 +25*x^28 +17*x^29 +13*x^30 +11*x^31 +9*x^32 +7*x^33 +5*x^34 +3*x^35) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)*(1 -x^2 +x^4)*(1 +11*x^6 -x^12)*(1 -11*x^6 -x^12)). - Colin Barker, Jul 18 2016

A133847 a(n)*a(n-9) = a(n-1)*a(n-8)+a(n-4)+a(n-5) with initial terms a(1)=...=a(9)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 13, 21, 33, 49, 169, 293, 421, 553, 823, 1365, 2179, 3265, 11289, 19585, 28153, 36993, 55081, 91393, 145929, 218689, 756163, 1311861, 1885783, 2477929, 3689557, 6121925, 9775033, 14648881, 50651601, 87875061
Offset: 1

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=9 then RETURN(1); else RETURN((a(n-1)*a(n-8)+a(n-4)+a(n-5))/a(n-9)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==a[9]==1,a[n]==(a[n-1]a[n-8]+a[n-4]+a[n-5])/a[n-9]},a,{n,50}] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,68,0,0,0,0,0,0,0,-68,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,3,5,7,9,13,21,33,49,169,293,421,553,823,1365,2179},50] (* Harvey P. Dale, Jan 14 2016 *)
  • PARI
    a(k=9, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 -67*x^8 -65*x^9 -63*x^10 -61*x^11 -59*x^12 -55*x^13 -47*x^14 -35*x^15 +49*x^16 +33*x^17 +21*x^18 +13*x^19 +9*x^20 +7*x^21 +5*x^22 +3*x^23) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +x^4)*(1 -67*x^8 +x^16)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 68*(u(n-8)-u(n-16))+u(n-24) with the initial 24 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 -67*x^8 -65*x^9 -63*x^10 -61*x^11 -59*x^12 -55*x^13 -47*x^14 -35*x^15 +49*x^16 +33*x^17 +21*x^18 +13*x^19 +9*x^20 +7*x^21 +5*x^22 +3*x^23) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +x^4)*(1 -67*x^8 +x^16)). - Colin Barker, Jul 18 2016