cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A072881 a(1)=a(2)=a(3)=1; for n>3, a(n)=(a(n-1)*a(n-2)+a(n-1)+a(n-2))/a(n-3).

Original entry on oeis.org

1, 1, 1, 3, 7, 31, 85, 393, 1093, 5071, 14119, 65523, 182449, 846721, 2357713, 10941843, 30467815, 141397231, 393723877, 1827222153, 5087942581, 23612490751, 65749529671, 305135157603, 849655943137, 3943144558081
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002, revised Feb 03 2005

Keywords

Comments

What accounts for the high proportion of semiprimes in this sequence? Primes: 3, 7, 31, 1093, 846721, 393723877, ... Semiprimes: 85 = 5 * 17 393 = 3 * 131 5071 = 11 * 461 14119 = 7 * 2017 65523 = 3 * 21841 182449 = 43 * 4243 5087942581 = 11113 * 457837 849655943137 = 17 * 49979761361 3943144558081 = 31 * 127198211551 - Jonathan Vos Post, Feb 04 2005

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 14, 0, -14, 0, 1},{1, 1, 1, 3, 7, 31},26] (* Ray Chandler, Jul 24 2016 *)
    nxt[{a_,b_,c_}]:={b,c,(c*b+c+b)/a}; NestList[nxt,{1,1,1},30][[All,1]] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    a(k=3, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Oct 28 2012

Formula

Both sequences u=(a(2n-1)){n>0} and u=(a(2n)){n>0} satisfy the order 3 linear recursion : u(n)=14u(n-1)-14u(n-2)+u(n-3).
a(2*n-1) = ceiling((1/11)*sqrt(1002/5-78*sqrt(33/5))*(sqrt(15)/2+sqrt(11)/ 2)^(2*n-1)).
a(2*n) = ceiling((1/11)*(13-sqrt(165))*(sqrt(15)/2+sqrt(11)/2)^(2*n)).
G.f.: x*(1+x-13*x^2-11*x^3+7*x^4+3*x^5)/(1-14*x^2+14*x^4-x^6). - Jaume Oliver Lafont, Sep 25 2009
a(n) = (4-(-1)^n)*a(n-1)-a(n-2)-1. - Bruno Langlois, Aug 21 2016
Sequences u=(a(2n)) and v=(a(2n-1)) satisfy order 2 linear recursions : u(n)=13*u(n-1)-u(n-2)-5 and v(n)=13*v(n-1)-v(n-2)-7. - Bruno Langlois, Aug 21 2016

A092264 a(n)*a(n-5) = a(n-1)*a(n-4)+a(n-2)+a(n-3), with initial terms a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 9, 17, 65, 117, 227, 449, 1737, 3137, 6105, 12097, 46819, 84565, 164593, 326161, 1262361, 2280101, 4437891, 8794241, 34036913, 61478145, 119658449, 237118337, 917734275, 1657629797, 3226340217, 6393400849
Offset: 1

Views

Author

Paul Heideman (ppheideman(AT)wisc.edu), Feb 19 2004

Keywords

Crossrefs

Programs

  • Maple
    R := proc(n) option remember; if n<5 then 1 else RETURN((R(n-1)*R(n-4)+R(n-2)+R(n-3))/R(n-5)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==1,a[n]==(a[n-1]a[n-4]+a[n-2]+a[n-3])/a[n-5]},a,{n,40}] (* or *) LinearRecurrence[ {0,0,0,28,0,0,0,-28,0,0,0,1},{1,1,1,1,1,3,5,9,17,65,117,227},40] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(k=5, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 -27*x^4 -25*x^5 -23*x^6 -19*x^7 +17*x^8 +9*x^9 +5*x^10 +3*x^11) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +5*x^2 -x^4)*(1 -5*x^2 -x^4)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=3, a(7)=5, a(8)=9, a(9)=17, a(10)=65, a(11)=117, a(12)=227, a(n)=28*a(n-4)-28*a(n-8)+a(n-12). - Harvey P. Dale, Aug 08 2013
G.f.: x*(1 +x +x^2 +x^3 -27*x^4 -25*x^5 -23*x^6 -19*x^7 +17*x^8 +9*x^9 +5*x^10 +3*x^11) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +5*x^2 -x^4)*(1 -5*x^2 -x^4)). - Colin Barker, Jul 18 2016

A133846 a(n)*a(n-7) = a(n-1)a(n-6)+a(n-3)+a(n-4) with initial terms a(1)=...=a(7)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 111, 195, 283, 465, 831, 1381, 4969, 8741, 12697, 20885, 37353, 62101, 223471, 393121, 571051, 939331, 1680031, 2793151, 10051203, 17681675, 25684567, 42248981, 75564019, 125629681, 452080641, 795282225
Offset: 1

Views

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=7 then RETURN(1); else RETURN((a(n-1)*a(n-6)+a(n-3)+a(n-4))/a(n-7)); fi; end;
  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,(g*b+e+d)/a}; Transpose[ NestList[ nxt,{1,1,1,1,1,1,1},40]][[1]] (* or *) LinearRecurrence[ {0,0,0,0,0,46,0,0,0,0,0,-46,0,0,0,0,0,1},{1,1,1,1,1,1,1,3,5,7,11,19,31,111,195,283,465,831},40] (* Harvey P. Dale, Aug 21 2014 *)
  • PARI
    a(k=7, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 -45*x^6 -43*x^7 -41*x^8 -39*x^9 -35*x^10 -27*x^11 +31*x^12 +19*x^13 +11*x^14 +7*x^15 +5*x^16 +3*x^17) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -45*x^6 +x^12)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 -45*x^6 -43*x^7 -41*x^8 -39*x^9 -35*x^10 -27*x^11 +31*x^12 +19*x^13 +11*x^14 +7*x^15 +5*x^16 +3*x^17) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -45*x^6 +x^12)). - Colin Barker, Jul 18 2016

A133847 a(n)*a(n-9) = a(n-1)*a(n-8)+a(n-4)+a(n-5) with initial terms a(1)=...=a(9)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 13, 21, 33, 49, 169, 293, 421, 553, 823, 1365, 2179, 3265, 11289, 19585, 28153, 36993, 55081, 91393, 145929, 218689, 756163, 1311861, 1885783, 2477929, 3689557, 6121925, 9775033, 14648881, 50651601, 87875061
Offset: 1

Views

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=9 then RETURN(1); else RETURN((a(n-1)*a(n-8)+a(n-4)+a(n-5))/a(n-9)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==a[9]==1,a[n]==(a[n-1]a[n-8]+a[n-4]+a[n-5])/a[n-9]},a,{n,50}] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,68,0,0,0,0,0,0,0,-68,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,3,5,7,9,13,21,33,49,169,293,421,553,823,1365,2179},50] (* Harvey P. Dale, Jan 14 2016 *)
  • PARI
    a(k=9, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 -67*x^8 -65*x^9 -63*x^10 -61*x^11 -59*x^12 -55*x^13 -47*x^14 -35*x^15 +49*x^16 +33*x^17 +21*x^18 +13*x^19 +9*x^20 +7*x^21 +5*x^22 +3*x^23) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +x^4)*(1 -67*x^8 +x^16)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 68*(u(n-8)-u(n-16))+u(n-24) with the initial 24 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 -67*x^8 -65*x^9 -63*x^10 -61*x^11 -59*x^12 -55*x^13 -47*x^14 -35*x^15 +49*x^16 +33*x^17 +21*x^18 +13*x^19 +9*x^20 +7*x^21 +5*x^22 +3*x^23) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +x^4)*(1 -67*x^8 +x^16)). - Colin Barker, Jul 18 2016

A133854 a(n)*a(n-13) = a(n-1)*a(n-12)+a(n-6)+a(n-7) with initial terms a(1)=...=a(13)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 11, 13, 17, 25, 37, 53, 73, 97, 321, 549, 781, 1017, 1257, 1501, 1995, 2985, 4471, 6453, 8931, 11905, 39433, 67457, 95977, 124993, 154505, 184513, 245273, 367041, 549817, 793601, 1098393, 1464193, 4849891
Offset: 1

Views

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=13 then RETURN(1); else RETURN((a(n-1)*a(n-12)+a(n-6)+a(n-7))/a(n-13)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]== a[8]== a[9]== a[10]== a[11]== a[12]==a[13]==1,a[n]==(a[n-1]a[n-12]+a[n-6]+ a[n-7])/ a[n-13]},a,{n,50}] (* Harvey P. Dale, Nov 24 2015 *)
  • PARI
    a(k=13, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 -123*x^12 -121*x^13 -119*x^14 -117*x^15 -115*x^16 -113*x^17 -111*x^18 -107*x^19 -99*x^20 -87*x^21 -71*x^22 -51*x^23 +97*x^24 +73*x^25 +53*x^26 +37*x^27 +25*x^28 +17*x^29 +13*x^30 +11*x^31 +9*x^32 +7*x^33 +5*x^34 +3*x^35) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)*(1 -x^2 +x^4)*(1 +11*x^6 -x^12)*(1 -11*x^6 -x^12)) + O(x^60)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 124*(u(n-12)-u(n-24))+u(n-36) with the initial 36 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 -123*x^12 -121*x^13 -119*x^14 -117*x^15 -115*x^16 -113*x^17 -111*x^18 -107*x^19 -99*x^20 -87*x^21 -71*x^22 -51*x^23 +97*x^24 +73*x^25 +53*x^26 +37*x^27 +25*x^28 +17*x^29 +13*x^30 +11*x^31 +9*x^32 +7*x^33 +5*x^34 +3*x^35) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)*(1 -x^2 +x^4)*(1 +11*x^6 -x^12)*(1 -11*x^6 -x^12)). - Colin Barker, Jul 18 2016

A243709 Coxeter numbers of the D-type Niemeier root systems.

Original entry on oeis.org

6, 10, 14, 18, 22, 30, 46
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2014

Keywords

Comments

These are exactly the even integers 2n such that the group Gamma_0(2n)+n has genus zero.

Crossrefs

Cf. A091401.

Formula

a(n) = 2*A133848(n+11). - Omar E. Pol, Dec 20 2014
Showing 1-6 of 6 results.