cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A048736 Dana Scott's sequence: a(n) = (a(n-2) + a(n-1) * a(n-3)) / a(n-4), a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 13, 22, 41, 111, 191, 361, 982, 1693, 3205, 8723, 15042, 28481, 77521, 133681, 253121, 688962, 1188083, 2249605, 6123133, 10559062, 19993321, 54419231, 93843471, 177690281, 483649942, 834032173, 1579219205, 4298430243, 7412446082, 14035282561, 38202222241, 65877982561
Offset: 0

Views

Author

Keywords

Comments

The recursion has the Laurent property. If a(0), a(1), a(2), a(3) are variables, then a(n) is a Laurent polynomial (a rational function with a monic monomial denominator). - Michael Somos, Feb 05 2012
A generalization is if the recursion is modified to a(n) = (a(n-2) + a(n-1) * b*a(n-3)) / a(n-4) where b is a constant, and with arbitrary nonzero initial values, (a(0), a(1), a(2), a(3)), then a(n) = c*(a(n-3) - a(n-6)) + a(n-9) for all n in Z where c is another constant. - Michael Somos, Oct 28 2021

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 13*x^6 + 22*x^7 + 41*x^8 + 111*x^9 + ...
		

Crossrefs

Cf. A192241, A192242 (primes and where they occur).
Cf. A276531.

Programs

  • Haskell
    a048736 n = a048736_list !! n
    a048736_list = 1 : 1 : 1 : 1 :
       zipWith div
         (zipWith (+)
           (zipWith (*) (drop 3 a048736_list)
                        (drop 1 a048736_list))
           (drop 2 a048736_list))
         a048736_list
    -- Reinhard Zumkeller, Jun 26 2011
    
  • Magma
    I:=[1,1,1,1]; [n le 4 select I[n] else (Self(n-2) + Self(n-1)*Self(n-3)) / Self(n-4): n in [1..30]]; // G. C. Greubel, Feb 20 2018
  • Maple
    P:=proc(q) local n,v; v:=[1,1,1,1]; for n from 1 to q do
    v:=[op(v),(v[-2]+v[-1]*v[-3])/v[-4]] od: op(v); end: P(35); # Paolo P. Lava, Aug 24 2025
  • Mathematica
    RecurrenceTable[{a[0] == a[1] == a[2] == a[3] == 1, a[n] == (a[n - 2] + a[n - 1]a[n - 3])/a[n - 4]}, a[n], {n, 40}] (* or *) LinearRecurrence[{0, 0, 10, 0, 0, -10, 0, 0, 1}, {1, 1, 1, 1, 2, 3, 5, 13, 22}, 41] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    Vec((1+x+x^2-9*x^3-8*x^4-7*x^5+5*x^6+3*x^7+2*x^8) / (1-10*x^3+10*x^6-x^9)+O(x^99)) \\ Charles R Greathouse IV, Jul 01 2011
    

Formula

a(n) = 9*a(n-3) - a(n-6) - 3 - ( ceiling(n/3) - floor(n/3) ), with a(0) = a(1) = a(2) = a(3) = 1, a(4) = 2, a(5) = 3. - Michael Somos
From Jaume Oliver Lafont, Sep 17 2009: (Start)
a(n) = 10*a(n-3) - 10*a(n-6) + a(n-9).
G.f.: (1 + x + x^2 - 9*x^3 - 8*x^4 - 7*x^5 + 5*x^6 + 3*x^7 + 2*x^8)/(1 - 10*x^3 + 10*x^6 - x^9). (End)
a(n) = a(3-n) for all n in Z. - Michael Somos, Feb 05 2012

Extensions

More terms from Michael Somos

A133848 a(n)*a(n-11) = a(n-1)*a(n-10)+a(n-5)+a(n-6) with initial terms a(1)=...=a(11)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 11, 15, 23, 35, 51, 71, 239, 411, 587, 767, 951, 1325, 2075, 3201, 4703, 6581, 22185, 38165, 54521, 71253, 88361, 123141, 192889, 297605, 437289, 611941, 2062927, 3548881, 5069803, 6625693, 8216551, 11450719
Offset: 1

Views

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=11 then RETURN(1); else RETURN((a(n-1)*a(n-10)+a(n-5)+a(n-6))/a(n-11)); fi; end;
  • Mathematica
    Rest@ CoefficientList[Series[x (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 - 93 x^10 - 91 x^11 - 89 x^12 - 87 x^13 - 85 x^14 - 83 x^15 - 79 x^16 - 71 x^17 - 59 x^18 - 43 x^19 + 71 x^20 + 51 x^21 + 35 x^22 + 23 x^23 + 15 x^24 + 11 x^25 + 9 x^26 + 7 x^27 + 5 x^28 + 3 x^29)/((1 - x) (1 + x) (1 - x + x^2 - x^3 + x^4) (1 + x + x^2 + x^3 + x^4) (1 - 93 x^10 + x^20)), {x, 0, 47}], x] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    a(k=11, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 -93*x^10 -91*x^11 -89*x^12 -87*x^13 -85*x^14 -83*x^15 -79*x^16 -71*x^17 -59*x^18 -43*x^19 +71*x^20 +51*x^21 +35*x^22 +23*x^23 +15*x^24 +11*x^25 +9*x^26 +7*x^27 +5*x^28 +3*x^29) / ((1 -x)*(1 +x)*(1 -x +x^2 -x^3 +x^4)*(1 +x +x^2 +x^3 +x^4)*(1 -93*x^10 +x^20)) + O(x^60)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 94*(u(n-10)-u(n-20))+u(n-30) with the initial 30 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 -93*x^10 -91*x^11 -89*x^12 -87*x^13 -85*x^14 -83*x^15 -79*x^16 -71*x^17 -59*x^18 -43*x^19 +71*x^20 +51*x^21 +35*x^22 +23*x^23 +15*x^24 +11*x^25 +9*x^26 +7*x^27 +5*x^28 +3*x^29) / ((1 -x)*(1 +x)*(1 -x +x^2 -x^3 +x^4)*(1 +x +x^2 +x^3 +x^4)*(1 -93*x^10 +x^20)). - Colin Barker, Jul 18 2016

A092264 a(n)*a(n-5) = a(n-1)*a(n-4)+a(n-2)+a(n-3), with initial terms a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 9, 17, 65, 117, 227, 449, 1737, 3137, 6105, 12097, 46819, 84565, 164593, 326161, 1262361, 2280101, 4437891, 8794241, 34036913, 61478145, 119658449, 237118337, 917734275, 1657629797, 3226340217, 6393400849
Offset: 1

Views

Author

Paul Heideman (ppheideman(AT)wisc.edu), Feb 19 2004

Keywords

Crossrefs

Programs

  • Maple
    R := proc(n) option remember; if n<5 then 1 else RETURN((R(n-1)*R(n-4)+R(n-2)+R(n-3))/R(n-5)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==1,a[n]==(a[n-1]a[n-4]+a[n-2]+a[n-3])/a[n-5]},a,{n,40}] (* or *) LinearRecurrence[ {0,0,0,28,0,0,0,-28,0,0,0,1},{1,1,1,1,1,3,5,9,17,65,117,227},40] (* Harvey P. Dale, Aug 08 2013 *)
  • PARI
    a(k=5, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 -27*x^4 -25*x^5 -23*x^6 -19*x^7 +17*x^8 +9*x^9 +5*x^10 +3*x^11) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +5*x^2 -x^4)*(1 -5*x^2 -x^4)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

a(1)=1, a(2)=1, a(3)=1, a(4)=1, a(5)=1, a(6)=3, a(7)=5, a(8)=9, a(9)=17, a(10)=65, a(11)=117, a(12)=227, a(n)=28*a(n-4)-28*a(n-8)+a(n-12). - Harvey P. Dale, Aug 08 2013
G.f.: x*(1 +x +x^2 +x^3 -27*x^4 -25*x^5 -23*x^6 -19*x^7 +17*x^8 +9*x^9 +5*x^10 +3*x^11) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +5*x^2 -x^4)*(1 -5*x^2 -x^4)). - Colin Barker, Jul 18 2016

A133846 a(n)*a(n-7) = a(n-1)a(n-6)+a(n-3)+a(n-4) with initial terms a(1)=...=a(7)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 111, 195, 283, 465, 831, 1381, 4969, 8741, 12697, 20885, 37353, 62101, 223471, 393121, 571051, 939331, 1680031, 2793151, 10051203, 17681675, 25684567, 42248981, 75564019, 125629681, 452080641, 795282225
Offset: 1

Views

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=7 then RETURN(1); else RETURN((a(n-1)*a(n-6)+a(n-3)+a(n-4))/a(n-7)); fi; end;
  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,(g*b+e+d)/a}; Transpose[ NestList[ nxt,{1,1,1,1,1,1,1},40]][[1]] (* or *) LinearRecurrence[ {0,0,0,0,0,46,0,0,0,0,0,-46,0,0,0,0,0,1},{1,1,1,1,1,1,1,3,5,7,11,19,31,111,195,283,465,831},40] (* Harvey P. Dale, Aug 21 2014 *)
  • PARI
    a(k=7, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 -45*x^6 -43*x^7 -41*x^8 -39*x^9 -35*x^10 -27*x^11 +31*x^12 +19*x^13 +11*x^14 +7*x^15 +5*x^16 +3*x^17) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -45*x^6 +x^12)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 -45*x^6 -43*x^7 -41*x^8 -39*x^9 -35*x^10 -27*x^11 +31*x^12 +19*x^13 +11*x^14 +7*x^15 +5*x^16 +3*x^17) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x +x^2)*(1 -45*x^6 +x^12)). - Colin Barker, Jul 18 2016

A133847 a(n)*a(n-9) = a(n-1)*a(n-8)+a(n-4)+a(n-5) with initial terms a(1)=...=a(9)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 13, 21, 33, 49, 169, 293, 421, 553, 823, 1365, 2179, 3265, 11289, 19585, 28153, 36993, 55081, 91393, 145929, 218689, 756163, 1311861, 1885783, 2477929, 3689557, 6121925, 9775033, 14648881, 50651601, 87875061
Offset: 1

Views

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=9 then RETURN(1); else RETURN((a(n-1)*a(n-8)+a(n-4)+a(n-5))/a(n-9)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==a[9]==1,a[n]==(a[n-1]a[n-8]+a[n-4]+a[n-5])/a[n-9]},a,{n,50}] (* or *) LinearRecurrence[{0,0,0,0,0,0,0,68,0,0,0,0,0,0,0,-68,0,0,0,0,0,0,0,1},{1,1,1,1,1,1,1,1,1,3,5,7,9,13,21,33,49,169,293,421,553,823,1365,2179},50] (* Harvey P. Dale, Jan 14 2016 *)
  • PARI
    a(k=9, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 -67*x^8 -65*x^9 -63*x^10 -61*x^11 -59*x^12 -55*x^13 -47*x^14 -35*x^15 +49*x^16 +33*x^17 +21*x^18 +13*x^19 +9*x^20 +7*x^21 +5*x^22 +3*x^23) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +x^4)*(1 -67*x^8 +x^16)) + O(x^50)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 68*(u(n-8)-u(n-16))+u(n-24) with the initial 24 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 -67*x^8 -65*x^9 -63*x^10 -61*x^11 -59*x^12 -55*x^13 -47*x^14 -35*x^15 +49*x^16 +33*x^17 +21*x^18 +13*x^19 +9*x^20 +7*x^21 +5*x^22 +3*x^23) / ((1 -x)*(1 +x)*(1 +x^2)*(1 +x^4)*(1 -67*x^8 +x^16)). - Colin Barker, Jul 18 2016

A133854 a(n)*a(n-13) = a(n-1)*a(n-12)+a(n-6)+a(n-7) with initial terms a(1)=...=a(13)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 5, 7, 9, 11, 13, 17, 25, 37, 53, 73, 97, 321, 549, 781, 1017, 1257, 1501, 1995, 2985, 4471, 6453, 8931, 11905, 39433, 67457, 95977, 124993, 154505, 184513, 245273, 367041, 549817, 793601, 1098393, 1464193, 4849891
Offset: 1

Views

Author

Emilie Hogan, Sep 26 2007

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<=13 then RETURN(1); else RETURN((a(n-1)*a(n-12)+a(n-6)+a(n-7))/a(n-13)); fi; end;
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]== a[8]== a[9]== a[10]== a[11]== a[12]==a[13]==1,a[n]==(a[n-1]a[n-12]+a[n-6]+ a[n-7])/ a[n-13]},a,{n,50}] (* Harvey P. Dale, Nov 24 2015 *)
  • PARI
    a(k=13, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Nov 01 2012
    
  • PARI
    Vec(x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 -123*x^12 -121*x^13 -119*x^14 -117*x^15 -115*x^16 -113*x^17 -111*x^18 -107*x^19 -99*x^20 -87*x^21 -71*x^22 -51*x^23 +97*x^24 +73*x^25 +53*x^26 +37*x^27 +25*x^28 +17*x^29 +13*x^30 +11*x^31 +9*x^32 +7*x^33 +5*x^34 +3*x^35) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)*(1 -x^2 +x^4)*(1 +11*x^6 -x^12)*(1 -11*x^6 -x^12)) + O(x^60)) \\ Colin Barker, Jul 18 2016

Formula

Sequence also generated by the linear recurrence 124*(u(n-12)-u(n-24))+u(n-36) with the initial 36 terms given by the quadratic recurrence.
G.f.: x*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10 +x^11 -123*x^12 -121*x^13 -119*x^14 -117*x^15 -115*x^16 -113*x^17 -111*x^18 -107*x^19 -99*x^20 -87*x^21 -71*x^22 -51*x^23 +97*x^24 +73*x^25 +53*x^26 +37*x^27 +25*x^28 +17*x^29 +13*x^30 +11*x^31 +9*x^32 +7*x^33 +5*x^34 +3*x^35) / ((1 -x)*(1 +x)*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)*(1 -x^2 +x^4)*(1 +11*x^6 -x^12)*(1 -11*x^6 -x^12)). - Colin Barker, Jul 18 2016

A276123 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1) + 1)*(a(n-2) + 1) / a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 10, 55, 154, 868, 2449, 13825, 39025, 220324, 621946, 3511351, 9912106, 55961284, 157971745, 891869185, 2517635809, 14213945668, 40124201194, 226531261495, 639469583290, 3610286238244, 10191389131441, 57538048550401, 162422756519761
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,4,10,55]; [n le 6 select I[n] else 17*Self(n-2)-17*Self(n-4)+Self(n-6): n in [1..30]]; // Vincenzo Librandi, Aug 27 2016
  • Mathematica
    LinearRecurrence[{0, 17, 0, -17, 0, 1}, {1, 1, 1, 4, 10, 55}, 40] (* Vincenzo Librandi, Aug 27 2016 *)
    nxt[{a_,b_,c_}]:={b,c,((c+1)(b+1))/a}; NestList[nxt,{1,1,1},30][[All,1]] (* Harvey P. Dale, Oct 01 2021 *)
  • PARI
    Vec((1+x-16*x^2-13*x^3+10*x^4+4*x^5)/((1-x)*(1+x)*(1-16*x^2+x^4)) + O(x^30)) \\ Colin Barker, Aug 21 2016
    

Formula

a(n) = (9-3*(-1)^n)/2*a(n-1) - a(n-2) - 1.
From Colin Barker, Aug 21 2016: (Start)
a(n) = 17*a(n-2) - 17*a(n-4) + a(n-6) for n > 5.
G.f.: (1 + x - 16*x^2 - 13*x^3 + 10*x^4 + 4*x^5) / ((1-x)*(1+x)*(1 - 16*x^2 + x^4)). (End)
a(2n+1) = A073352(n). a(2n) = A048907(n). - R. J. Mathar, Jul 04 2024

Extensions

More terms from Colin Barker, Aug 21 2016

A127743 Triangular array where T(n,k) is the number of set partitions of n with k atomic parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 22, 16, 9, 4, 1, 92, 60, 31, 14, 5, 1, 426, 252, 120, 52, 20, 6, 1, 2146, 1160, 510, 209, 80, 27, 7, 1, 11624, 5776, 2348, 904, 335, 116, 35, 8, 1, 67146, 30832, 11610, 4184, 1481, 507, 161, 44, 9, 1
Offset: 1

Views

Author

Alford Arnold, Feb 24 2007

Keywords

Comments

Triangular array distributing the Bell numbers (A000110). The value associated with each partition is the product of A074664(k) for each part of size k, times the number of compositions associated with the partition (A048996 & A072881). The value for T(n,k) is the total of these values for each partition of n into k parts.
Calculating the appropriate weights can be done by "working backward". Suppose for example we know the weights for 1 through 6 and desire the weight for the partitions of seven: Substitute the weights for each partition value and multiply. For example, 7 = 4+3 so f([4,3]) = 6*2 = 12; adjusting for the number of permutations of [4,3] we now have 2*12 = 24. Continuing in this manner for each partition of seven and summing to 451 we now know all of the values except that associated with the partition [7] which must be 877 - 451 = 426.
From Mike Zabrocki: (Start)
Every set partition can be uniquely split into "atomic" set partitions or is itself already atomic.
{{1},{2},{3}} = {{1}}|{{1}}|{{1}}
{{1},{23}} = {{1}}|{{12}}
{{12},{3}} = {{12}}|{{1}}
{{13},{2}} is already atomic
{{123}} is already atomic
where this operation | is defined as {A1,...,Ar}|{B1,...,Bs} = {A1,...,Ar,B1+n,...,Bs+n}
where Bi+n = {bi1+n,bi2+n,...,bik+n} if Bi = {bi1,bi2,...,bik} and n = |A1|+|A2|+...+|Ar|. (End)
Subtriangle (n >= 1 and 1 <= k <= n) of triangle given by [0,1,1,2,1,3,1,4,1,5,1,6,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 03 2007
From Peter Bala, Aug 05 2014: (Start)
Let B(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + ... denote the o.g.f. for the Bell numbers A000110. Let f(x) = (B(x) - 1)/(x*B(x)) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for the first column of this array. Then this array appears to be the Riordan array (f(x), x*f(x)).
If true, this gives the o.g.f. of the array as (B(x) - 1)/( x*(t + (1 - t)*B(x)) ) = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ... and also the hockey-stick recurrence: T(n+1,k+1) = T(n,k) + T(n-1,k) + 2*T(n-2,k) + 6*T(n-3,k) + 22*T(n-4,k) + ..., n,k >= 1. (End)

Examples

			The partitions of 4 are
  4 31 22 211 1111
and the products are
  1*6 2*2 1*1 3*1 1*1
therefore row 4 of the table is
  6 5 3 1.
From _Philippe Deléham_, Aug 03 2007: (Start)
Triangle begins:
     1;
     1,    1;
     2,    2,   1;
     6,    5,   3,   1;
    22,   16,   9,   4,  1;
    92,   60,  31,  14,  5,  1;
   426,  252, 120,  52, 20,  6, 1;
  2146, 1160, 510, 209, 80, 27, 7, 1; ...
Triangle [0,1,1,2,1,3,1,4,1,...] DELTA [1,0,0,0,0,0,...] begins:
  1;
  0,    1;
  0,    1,    1;
  0,    2,    2,   1;
  0,    6,    5,   3,   1;
  0,   22,   16,   9,   4,  1;
  0,   92,   60,  31,  14,  5,  1;
  0,  426,  252, 120,  52, 20,  6, 1;
  0, 2146, 1160, 510, 209, 80, 27, 7, 1; ...
(End)
		

Crossrefs

Cf. A000041, A000110 (row sums), A074664 (1st column), A048996, A072881, A036043, A036042, A084938.

Programs

  • Mathematica
    T[n_, m_] := T[n, m] = Sum[Sum[T[k+i, k]*Binomial[n-m-k-1, n-m-k-i], {i, 1, n-m-k}]*Binomial[k+m-1, k], {k, 1, n-m}] + Binomial[n-1, n-m]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 23 2015, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=sum((sum(T(k+i,k)*binomial(n-m-k-1,n-m-k-i),i,1,n-m-k))*binomial(k+m-1,k),k,1,n-m)+binomial(n-1,n-m); /* Vladimir Kruchinin, Mar 21 2015 */
    
  • PARI
    {T(n,m) = sum(k=1,n-m, (sum(i=1, n-m-k, (T(k+i, k)*binomial(n-m-k-1, n-m-k-i))*binomial(k+m-1, k)))) + binomial(n-1, n-m)};
    for(n=1, 10, for(m=1, n, print1(T(n,m), ", "))) \\ G. C. Greubel, Dec 06 2018

Formula

T(n, m) = Sum_{k=1..n-m}( Sum_{i=1..n-m-k}(T(k+i, k)*C(n-m-k-1, n-m-k-i))*C(k+m-1, k) ) + C(n-1, n-m). - Vladimir Kruchinin, Mar 21 2015

Extensions

Edited by Franklin T. Adams-Watters, Jan 25 2010

A276122 a(0) = a(1) = a(2) = 1; for n > 2, a(n) = (a(n-1)^2+a(n-2)^2+a(n-1)+a(n-2))/a(n-3).

Original entry on oeis.org

1, 1, 1, 4, 22, 526, 69427, 219111589, 91273561736491, 119994570874632853695766, 65713991236617279734602790963627271046, 47311933073383646516067037755547920981262829886906923065810924
Offset: 0

Views

Author

Bruno Langlois, Aug 21 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 1] + a[n - 2])/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 11}] (* Michael De Vlieger, Aug 21 2016 *)

Formula

a(n) = 6*a(n-1)*a(n-2)-a(n-3)-1.
a(n) ~ 1/6 * c^(phi^n), where c = 2.059783590102273... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 20 2017

Extensions

a(10) corrected by Seiichi Manyama, Aug 21 2016

A283958 a(n) = (Sum_{j=1..h-1} a(n-j) + a(n-1)*a(n-h+1))/a(n-h) with a(1), ..., a(h)=1, where h = 4.

Original entry on oeis.org

1, 1, 1, 1, 4, 10, 25, 139, 391, 1033, 5806, 16384, 43345, 243685, 687709, 1819441, 10228936, 28867366, 76373161, 429371599, 1211741635, 3205853305, 18023378194, 50864281276, 134569465633, 756552512521, 2135088071929, 5648711703265, 31757182147660
Offset: 1

Views

Author

Seiichi Manyama, Mar 18 2017

Keywords

Crossrefs

Cf. A283329.
Cf. A072881 (h=3), this sequence (h=4), A283959 (h=5), A283960 (h=6).

Programs

  • Mathematica
    a[n_]:= If[n<5, 1, (Sum[a[n-j] , {j, 3}] +  a[n - 1] a[n - 3])/a[n - 4]]; Table[a[n], {n, 29}] (* Indranil Ghosh, Mar 18 2017 *)
  • PARI
    a(n) = if(n<5, 1, (sum(j=1, 3, a(n - j)) + a(n - 1)*a(n - 3))/a(n - 4));
    for(n=1, 29, print1(a(n),", ")) \\ Indranil Ghosh, Mar 18 2017

Formula

a(3*k) = 3*a(3*k-1) - a(3*k-2) - 1,
a(3*k+1) = 3*a(3*k) - a(3*k-1) - 1,
a(3*k+2) = 6*a(3*k+1) - a(3*k) - 1.
G.f.: -x*(4*x^8 + 10*x^7 + 25*x^6 - 33*x^5 - 39*x^4 - 42*x^3 + x^2 + x + 1) / ((x - 1)*(x^2 + x + 1)*(x^6 - 42*x^3 + 1)). - Alois P. Heinz, Mar 20 2017
Showing 1-10 of 13 results. Next