cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A192241 Primes in Dana Scott's sequence (A048736).

Original entry on oeis.org

2, 3, 5, 13, 41, 191, 1693, 77521, 6123133, 19993321, 65877982561, 45970265603856656467133467254989217935871992827865240416294386431
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 01 2011

Keywords

Comments

a(n) = A048736(A192242(n)); the larger entries were found as probable primes and then successfully checked with Alpertron's ECM applet.

Crossrefs

Cf. A129739 (primes in Somos-4 sequence).

A192242 Positions of primes within Dana Scott's sequence (A048736).

Original entry on oeis.org

4, 5, 6, 7, 9, 11, 14, 19, 25, 27, 38, 208, 289, 433, 529, 1069, 1163, 1801, 5185, 5630, 8148, 9731, 11124, 23787, 46056, 64182, 82629, 92124, 97221
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 01 2011

Keywords

Comments

A048736(a(n)) = A192241(n).
Larger entries are probable primes (BPSW plus random-base M-R). Values below a(n)=8148 have been proven prime. - Dana Jacobsen, Apr 30 2015

Programs

  • Perl
    use ntheory ":all";
    use Math::GMPz;
    my @a = map { Math::GMPz->new($_) } (1,1,1,1); for (1..100000) {  push @a, ($a[-2]+$a[-1]*$a[-3])/$a[-4];  say ++$i," $#a" if is_prime($a[-1]); }
    # Dana Jacobsen, Apr 30 2015

Extensions

More terms from Dana Jacobsen, Apr 30 2015

A006720 Somos-4 sequence: a(0)=a(1)=a(2)=a(3)=1; for n >= 4, a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, 8209, 83313, 620297, 7869898, 126742987, 1687054711, 47301104551, 1123424582771, 32606721084786, 1662315215971057, 61958046554226593, 4257998884448335457, 334806306946199122193, 23385756731869683322514, 3416372868727801226636179
Offset: 0

Views

Author

Keywords

Comments

From the 5th term on, all terms have a primitive divisor; in other words, a prime divisor that divides no earlier term in the sequence. A proof appears in the Everest-McLaren-Ward paper. - Graham Everest (g.everest(AT)uea.ac.uk), Oct 26 2005
Twelve prime terms are known, occurring at indices 4, 5, 6, 7, 8, 11, 13, 16, 43, 52, 206, 647. The last two have been checked for probable primality only. The 647th term has 18498 decimal digits. Possibly these are the only prime terms in the entire sequence. - Graham Everest (g.everest(AT)uea.ac.uk), Nov 28 2006
The density of primes dividing some term in the sequence is 11/21. - Jeremy Rouse, Sep 18 2013
a(n) is a divisor of a(n+k*(2*n-3)) for all integers n and k. - Peter H van der Kamp, May 18 2015
a(n) is a divisor of A051138(k*(2*n-3)) for all integers n and k. - Helmut Ruhland, Jan 26 2024

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 565.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; pp. 9, 179.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For primes see A129739, A129740, A129741.
Cf. A227199 (primes dividing some term).

Programs

  • Haskell
    a006720 n = a006720_list !! n
    a006720_list = [1,1,1,1] ++
       zipWith div (foldr1 (zipWith (+)) (map b [1..2])) a006720_list
       where b i = zipWith (*) (drop i a006720_list) (drop (4-i) a006720_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    I:=[1,1,1,1]; [n le 4 select I[n] else (Self(n-1)*Self(n-3)+Self(n-2)^2)/Self(n-4): n in [1..30]]; // Vincenzo Librandi, Aug 07 2017
  • Maple
    Digits:=11; f(x):=4*x^3-4*x+1;sols:=evalf(solve(f(x),x)); e1:=Re(sols[1]); e3:=Re(sols[2]); w1:=evalf(Int((f(x))^(-0.5),x=e1..infinity)); w3:=I*evalf(Int((-f(x))^(-0.5),x=-infinity..e3)); k:=2*w1-evalf(Int((f(x))^(-0.5),x=1..infinity)); z0:=w3+evalf(Int((f(x))^(-0.5),x=e3..-1)); A:=1/WeierstrassSigma(z0,4.0,-1.0); B:=WeierstrassSigma(k,4.0,-1.0)/WeierstrassSigma(z0+k,4.0,-1.0)/A; for n from 0 to 10 do a[n]:=A*B^n*WeierstrassSigma(z0+n*k,4.0,-1.0)/(WeierstrassSigma(k,4.0,-1.0))^(n^2) od; # Andrew Hone, Oct 12 2005
    A006720 := proc(n)
        option remember;
        if n <= 3 then
            1;
        else
            (procname(n-1)*procname(n-3)+procname(n-2)^2)/procname(n-4) ;
        end if;
    end proc: # R. J. Mathar, Jul 12 2012
  • Mathematica
    a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = (a[n - 1] a[n - 3] + a[n - 2]^2)/a[n - 4]; Array[a, 23] (* Robert G. Wilson v, Jul 04 2007 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]a[n-3]+a[n-2]^2)/ a[n-4]},a,{n,30}] (* Harvey P. Dale, Apr 07 2018 *)
    b[ n_] := If[-2<=n<=2, {2, 1, 1, 3, 23}[[n+3]], 2*a[n+2]^3*a[n+3] + a[n+1]^2*(a[n+3]*a[n+4] - a[n+2]*a[n+5])]; a[ n_] := If[OddQ[n], b[(n-3)/2], b[-n/2]]; (* Michael Somos, Feb 28 2022 *)
  • PARI
    a=vector(99);a[1]=a[2]=a[3]=a[4]=1;for(n=5,#a,a[n]=(a[n-1]*a[n-3]+a[n-2]^2)/a[n-4]); a \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    from gmpy2 import divexact
    A006720 = [1, 1, 1, 1]
    for n in range(4, 101):
        A006720.append(divexact(A006720[n-1]*A006720[n-3]+A006720[n-2]**2,A006720[n-4]))
    # Chai Wah Wu, Sep 01 2014
    

Formula

a(n) = a(3-n) = (-1)^n * A006769(2*n-3) for all n in Z.
a(n+1)/a(n) seems to be asymptotic to C^n with C = 1.226.... - Benoit Cloitre, Aug 07 2002. Confirmed by Hone - see below.
The terms of the sequence have the leading order asymptotics log a(n) ~ D n^2 with D = zeta(w1)*k^2/(2*w1) - log|sigma(k)| = 0.10222281... where zeta and sigma are the Weierstrass functions with invariants g2 = 4, g3 = -1, w1 = 1.496729323 is the real half-period of the corresponding elliptic curve, k = -1.134273216 as above. This agrees with Benoit Cloitre's numerical result with C = exp(2D) = 1.2268447... - Andrew Hone, Feb 09 2005
a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4); a(0) = a(1) = a(2) = a(3) = 1; exact formula is a(n) = A*B^n*sigma (z_0+nk)/(sigma (k))^(n^2), where sigma is the Weierstrass sigma function associated to the elliptic curve y^2 = 4*x^3-4*x+1, A = 1/sigma(z_0) = 0.112724016 - 0.824911687*i, B = sigma(k)*sigma (z_0)/sigma (z_0+k) = 0.215971963 + 0.616028193*i, k = 1.859185431, z_0 = 0.204680500 + 1.225694691*i, sigma(k) = 1.555836426, all to 9 decimal places. This is a special case of a general formula for 4th-order bilinear recurrences. The Somos-4 sequence corresponds to the sequence of points (2n-3)P on the curve, where P = (0, 1). - Andrew Hone, Oct 12 2005
a(2*n) = b(-n), a(2*n+1) = b(n-1) where b(n) = A188313(n) for all n in Z. - Michael Somos, Feb 27 2022

A006721 Somos-5 sequence: a(n) = (a(n-1) * a(n-4) + a(n-2) * a(n-3)) / a(n-5), with a(0) = a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713, 1249441, 9434290, 68570323, 1013908933, 11548470571, 142844426789, 2279343327171, 57760865728994, 979023970244321, 23510036246274433, 771025645214210753
Offset: 0

Views

Author

Keywords

Comments

Using the addition formula for the Weierstrass sigma function it is simple to prove that the subsequence of even terms of a Somos-5 type sequence satisfy a 4th-order recurrence of Somos-4 type and similarly the odd subsequence satisfies the same 4th-order recurrence. - Andrew Hone, Aug 24 2004
log(a(n)) ~ 0.071626946 * n^2. (Hone)
The Brown link article gives interesting information about related sequences including recurrences and numerical approximations.
The n-th term is a divisor of the (n+k*(2*n-4))-th term for all integers n and k. - Peter H van der Kamp, May 18 2015
The elliptic curve y^2 + xy = x^3 + x^2 - 2x (LMFDB label 102.a1) has infinite order point P = (2, 2) and 2-torsion point T = (0, 0). Define d(n) = a(n+2). The x and y coordinates of nP + T have denominators d(n)^2 and d(n)^3. - Michael Somos, Oct 29 2022

References

  • Paul C. Kainen, Fibonacci in Somos-5 ..., Fib. Q., 60:4 (2022), 362-364.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006721 n = a006721_list !! n
    a006721_list = [1,1,1,1,1] ++
      zipWith div (foldr1 (zipWith (+)) (map b [1..2])) a006721_list
      where b i = zipWith (*) (drop i a006721_list) (drop (5-i) a006721_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    I:=[1,1,1,1,1]; [n le 5 select I[n] else (Self(n-1) * Self(n-4) + Self(n-2) * Self(n-3)) div Self(n-5): n in [1..30]]; // Vincenzo Librandi, May 18 2015
  • Maple
    for n from 0 to 4 do a[n]:= 1 od:
    for n from 5 to 50 do a[n]:=(a[n-1] * a[n-4] + a[n-2] * a[n-3]) / a[n-5] od:
    seq(a[i],i=0..50); # Robert Israel, May 19 2015
  • Mathematica
    a[0] = a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = (a[n - 1] a[n - 4] + a[n - 2] a[n - 3])/a[n - 5]; Array[a, 27, 0] (* Robert G. Wilson v, Aug 15 2010 *)
    a[ n_] := If[ Abs [n - 2] < 3, 1, If[ n < 0, a[4 - n], a[n] = (a[n - 1] a[n - 4] + a[n - 2] a[n - 3]) / a[n - 5]]]; (* Michael Somos, Jul 15 2011 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==1,a[n]==(a[n-1]a[n-4]+ a[n-2]a[n-3])/a[n-5]},a,{n,30}] (* Harvey P. Dale, Dec 25 2011 *)
  • PARI
    {a(n) = if( abs(n-2) < 3, 1, if( n<0, a(4-n), (a(n-1) * a(n-4) + a(n-2) * a(n-3)) / a(n-5)))}; /* Michael Somos, Jul 15 2011 */
    
  • PARI
    {a(n) = my(E = ellinit([1, 1, 0, -2, 0]), P = [2, 2], T = [0, 0]); if(n == 2, 1, n = abs(n-2); sqrtint(denominator(elladd(E, T, ellmul(E, P, n))[1])))}; /* Michael Somos, Oct 29 2022 */
    
  • Python
    from gmpy2 import divexact
    A006721 = [1,1,1,1,1]
    for n in range(5,1001):
        A006721.append(int(divexact(A006721[n-1]*A006721[n-4]+A006721[n-2]*A006721[n-3], A006721[n-5]))) # Chai Wah Wu, Aug 15 2014
    

Formula

Comments from Andrew Hone, Aug 24 2004: "Both the even terms b(n)=a(2n) and odd terms b(n)=a(2n+1) satisfy the fourth-order recurrence b(n)=(b(n-1)*b(n-3)+8*b(n-2)^2)/b(n-4).
"Hence the general formula is a(2n)=A*B^n*sigma(c+n*k)/sigma(k)^(n^2), a(2n+1)=D*E^n*sigma(f+n*k)/sigma(k)^(n^2) where sigma is the Weierstrass sigma function associated to the elliptic curve y^2=4*x^3-(121/12)*x+845/216 (this is birationally equivalent to the minimal model V^2+U*V+6*V=U^3+7*U^2+12*U given by van der Poorten).
"The real/imaginary half-periods of the curve are w1=1.181965956, w3=0.973928783*I and the constants are A=0.142427718-1.037985022*I, B=0.341936209+0.389300717*I, c=0.163392411+w3, k=1.018573545, D=-0.363554228-0.803200610*I, E=0.644801269+0.734118205*I, f=c+k/2-w1 all to 9 decimal places."
a(4 - n) = a(n). a(n+2) * a(n-2) = 2 * a(n+1) * a(n-1) - a(n)^2 if n is even. a(n+2) * a(n-2) = 3 * a(n+1) * a(n-1) - a(n)^2 if n is odd.

Extensions

a(26)-a(27) from Robert G. Wilson v, Aug 15 2010
Definition corrected by Chai Wah Wu, Aug 15 2014

A006722 Somos-6 sequence: a(n) = (a(n-1) * a(n-5) + a(n-2) * a(n-4) + a(n-3)^2) / a(n-6), a(0) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421, 1103, 5047, 41783, 281527, 2534423, 14161887, 232663909, 3988834875, 45788778247, 805144998681, 14980361322965, 620933643034787, 16379818848380849, 369622905371172929, 20278641689337631649, 995586066665500470689
Offset: 0

Views

Author

Keywords

References

  • C. Pickover, Mazes for the Mind, St. Martin's Press, NY, 1992, p. 350.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006722 n = a006722_list !! n
    a006722_list = [1,1,1,1,1,1] ++
      zipWith div (foldr1 (zipWith (+)) (map b [1..3])) a006722_list
      where b i = zipWith (*) (drop i a006722_list) (drop (6-i) a006722_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [n le 6 select 1 else (Self(n-1)*Self(n-5)+Self(n-2)*Self(n-4)+ Self(n-3)^2)/Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 02 2015
  • Mathematica
    a[n_ /; 0 <= n <= 5] = 1; a[n_] := a[n] = (a[n-1]*a[n-5] + a[n-2]*a[n-4] + a[n-3]^2) / a[n-6]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 22 2013 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==1,a[n]==(a[n-1]a[n-5]+ a[n-2]a[n-4]+a[n-3]^2)/a[n-6]},a,{n,30}] (* Harvey P. Dale, Dec 20 2014 *)
  • PARI
    {a(n) = if( n>-1 && n<6, 1, if( n<0, a(5 - n), (a(n - 1) * a(n - 5) + a(n - 2) * a(n - 4) + a(n-3) * a(n-3)) / a(n - 6)))}; /* Michael Somos, Jan 30 2012 */
    
  • Python
    from gmpy2 import divexact
    A006722 = [1,1,1,1,1,1]
    for n in range(6,101):
        A006722.append(divexact(A006722[n-1]*A006722[n-5]+A006722[n-2]*A006722[n-4]+A006722[n-3]**2,A006722[n-6]))
    # Chai Wah Wu, Sep 01 2014
    

Formula

a(n) = a(5-n).
Michael Somos found an explicit formula for a(n) in 1993, which is not as widely known as it should be. The following is a quotation from the "Somos 6 sequence" document mentioned in the Links section: (Start)
This sequence is one of a large class of sequences of numbers that satisfy a non-linear recurrence relation depending on previous terms. It is also one of the class of sequences which can be computed from a theta series, hence I call them theta sequences. Here are the details:
Fix the following seven constants:
c1 = 0.875782749065950194217251...,
c2 = 1.084125925473763343779968...,
c3 = 0.114986002186402203509006...,
c4 = 0.077115634258697284328024...,
c5 = 1.180397390176742642553759...,
c6 = 1.508030831265086447098989..., and
c7 = 2.551548771413081602906643... .
Consider the doubly indexed series: f(x,y) = c1*c2^(x*y)*sum(k2, (-1)^k2*sum(k1, g(k1,k2,x,y))) , where g(k1,k2,x,y) = c3^(k1*k1)*c4^(k2*k2)*c5^(k1*k2)*cos(c6*k1*x+c7*k2*y) . Here both sums range over all integers.
Then the sequence defined by a(n) = f(n-2.5,n-2.5) is the Somos 6 sequence. I announced this in 1993. (End) - N. J. A. Sloane, Dec 06 2015
From Andrew Hone and Yuri Fedorov, Nov 27 2015: (Start)
The following is an exact formula for a(n):
a(n+3) = A*B^n*C^(n^2 -1)*sigma(v_0 + n*v) / sigma(v)^(n^2),
where
A = C / sigma(v_0),
B = A^(-1)*sigma(v) / sigma(v_0+v),
C = i/sqrt(20) (with i the imaginary unit),
sigma is the two-variable Kleinian sigma-function associated with the genus two curve X: y^2 = 4*x^5 - 233*x^4 + 1624*x^3 - 422*x^2 + 36*x - 1, and
v and v_0 are two-component vectors in the Jacobian of X, being the images under the Abel map of the divisors P_1+P_2 - 2*infinity, Q_1 + Q_2 - 2*infinity, respectively, where points P_j and Q_j on X are given by
P_1 = ( -8 + sqrt(65), 20*i*(129 -16*sqrt(65)) ),
P_2 = ( -8 - sqrt(65), 20*i*(129 +16*sqrt(65)) ),
Q_1 = ( 5 + 2*sqrt(6), 4*i*(71 +sqrt(6)) ),
Q_2 = ( 5 - 2*sqrt{6}, 4*i*(71 -sqrt(6)) ).
The Abel map is based at infinity and calculated with respect to the basis of holomorphic differentials dx/y, x dx/y.
Approximate values from Maple are A = 0.0619-0.0317*i, B = -0.0000973-0.0000158*i, v = (-.341*i, .477*i), v_0 = (-.379-.150*i, -.259+.576*i).
(End)

Extensions

More terms from James A. Sellers, Aug 22 2000

A006723 Somos-7 sequence: a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-5) + a(n-3) * a(n-4)) / a(n-7), a(0) = ... = a(6) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 5, 9, 17, 41, 137, 769, 1925, 7203, 34081, 227321, 1737001, 14736001, 63232441, 702617001, 8873580481, 122337693603, 1705473647525, 22511386506929, 251582370867257, 9254211194697641, 215321535159114017
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006723 n = a006723_list !! n
    a006723_list = [1,1,1,1,1,1,1] ++
      zipWith div (foldr1 (zipWith (+)) (map b [1..3])) a006723_list
      where b i = zipWith (*) (drop i a006723_list) (drop (7-i) a006723_list)
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    I:=[1,1,1,1,1,1,1]; [n le 7 select I[n] else (Self(n-1)*Self(n-6) + Self(n-2)*Self(n-5) + Self(n-3)*Self(n-4))/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==1,a[n] == (a[n-1]a[n-6]+a[n-2]a[n-5]+a[n-3]a[n-4])/a[n-7]},a,{n,30}] (* Harvey P. Dale, Jan 19 2012 *)
  • PARI
    {a(n) = my(v); if( n<0, n = 6-n); if( n<7, 1, n++; v = vector(n, k, 1); for( k=8, n, v[k] = (v[k-1] * v[k-6] + v[k-2] * v[k-5] + v[k-3] * v[k-4]) / v[k-7]); v[n])};
    
  • Python
    from gmpy2 import divexact
    A006723 = [1,1,1,1,1,1,1]
    for n in range(7,101):
        A006723.append(divexact(A006723[n-1]*A006723[n-6]+A006723[n-2]*A006723[n-5]+A006723[n-3]*A006723[n-4],A006723[n-7]))
    # Chai Wah Wu, Sep 01 2014
    

Formula

a(6 - n) = a(n) for all n in Z.
a(n) = ((8-2*(-1)^n)*a(n-5)*a(n-3)-a(n-4)^2)/a(n-8). - Bruno Langlois, Aug 09 2016

Extensions

More terms from James A. Sellers, Aug 22 2000

A072881 a(1)=a(2)=a(3)=1; for n>3, a(n)=(a(n-1)*a(n-2)+a(n-1)+a(n-2))/a(n-3).

Original entry on oeis.org

1, 1, 1, 3, 7, 31, 85, 393, 1093, 5071, 14119, 65523, 182449, 846721, 2357713, 10941843, 30467815, 141397231, 393723877, 1827222153, 5087942581, 23612490751, 65749529671, 305135157603, 849655943137, 3943144558081
Offset: 1

Views

Author

Benoit Cloitre, Jul 28 2002, revised Feb 03 2005

Keywords

Comments

What accounts for the high proportion of semiprimes in this sequence? Primes: 3, 7, 31, 1093, 846721, 393723877, ... Semiprimes: 85 = 5 * 17 393 = 3 * 131 5071 = 11 * 461 14119 = 7 * 2017 65523 = 3 * 21841 182449 = 43 * 4243 5087942581 = 11113 * 457837 849655943137 = 17 * 49979761361 3943144558081 = 31 * 127198211551 - Jonathan Vos Post, Feb 04 2005

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 14, 0, -14, 0, 1},{1, 1, 1, 3, 7, 31},26] (* Ray Chandler, Jul 24 2016 *)
    nxt[{a_,b_,c_}]:={b,c,(c*b+c+b)/a}; NestList[nxt,{1,1,1},30][[All,1]] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    a(k=3, n) = {K = (k-1)/2; vds = vector(n); for (i=1, 2*K+1, vds[i] = 1;); for (i=2*K+2, n, vds[i] = (vds[i-1]*vds[i-2*K]+vds[i-K]+vds[i-K-1])/vds[i-2*K-1];); for (i=1, n, print1(vds[i], ","););} \\ Michel Marcus, Oct 28 2012

Formula

Both sequences u=(a(2n-1)){n>0} and u=(a(2n)){n>0} satisfy the order 3 linear recursion : u(n)=14u(n-1)-14u(n-2)+u(n-3).
a(2*n-1) = ceiling((1/11)*sqrt(1002/5-78*sqrt(33/5))*(sqrt(15)/2+sqrt(11)/ 2)^(2*n-1)).
a(2*n) = ceiling((1/11)*(13-sqrt(165))*(sqrt(15)/2+sqrt(11)/2)^(2*n)).
G.f.: x*(1+x-13*x^2-11*x^3+7*x^4+3*x^5)/(1-14*x^2+14*x^4-x^6). - Jaume Oliver Lafont, Sep 25 2009
a(n) = (4-(-1)^n)*a(n-1)-a(n-2)-1. - Bruno Langlois, Aug 21 2016
Sequences u=(a(2n)) and v=(a(2n-1)) satisfy order 2 linear recursions : u(n)=13*u(n-1)-u(n-2)-5 and v(n)=13*v(n-1)-v(n-2)-7. - Bruno Langlois, Aug 21 2016

A275173 a(n) = (a(n-3) + a(n-1) * a(n-5)) / a(n-6), a(0) = a(1) = ... = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 22, 36, 51, 82, 129, 321, 529, 753, 1217, 1921, 4786, 7891, 11236, 18166, 28681, 71462, 117828, 167779, 271266, 428289, 1067137, 1759521, 2505441, 4050817, 6395649, 15935586, 26274979, 37413828, 60490982, 95506441, 237966646
Offset: 0

Views

Author

Seiichi Manyama, Jul 19 2016

Keywords

Comments

Inspired by A048736.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 3] + a[n - 1] a[n - 5])/a[n - 6], a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 1, a[5] == 1, a[6] == 1}, a, {n, 42}] (* or *)
    CoefficientList[Series[(1 + x + x^2 + x^3 + x^4 - 15 x^5 - 14 x^6 - 13 x^7 - 12 x^8 - 10 x^9 + 9 x^10 + 6 x^11 + 4 x^12 + 3 x^13 + 2 x^14)/((1 - x) (1 + x + x^2 + x^3 + x^4) (1 - 15 x^5 + x^10)), {x, 0, 41}], x] (* Michael De Vlieger, Jul 19 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,(d+f*b)/a}; NestList[nxt,{1,1,1,1,1,1},50][[;;,1]] (* Harvey P. Dale, Jan 06 2024 *)
  • PARI
    Vec((1 +x +x^2 +x^3 +x^4 -15*x^5 -14*x^6 -13*x^7 -12*x^8 -10*x^9 +9*x^10 +6*x^11 +4*x^12 +3*x^13 +2*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -15*x^5 +x^10)) + O(x^50)) \\ Colin Barker, Jul 19 2016
  • Ruby
    def A(k, l, n)
      a = Array.new(k * 2, 1)
      ary = [1]
      while ary.size < n + 1
        break if (a[1] * a[-1] + a[k] * l) % a[0] > 0
        a = *a[1..-1], (a[1] * a[-1] + a[k] * l) / a[0]
        ary << a[0]
      end
      ary
    end
    def A275173(n)
      A(3, 1, n)
    end
    

Formula

G.f.: (1 +x +x^2 +x^3 +x^4 -15*x^5 -14*x^6 -13*x^7 -12*x^8 -10*x^9 +9*x^10 +6*x^11 +4*x^12 +3*x^13 +2*x^14) / ((1 -x)*(1 +x +x^2 +x^3 +x^4)*(1 -15*x^5 +x^10)). - Colin Barker, Jul 19 2016
a(n) = 16*a(n-5) - 16*a(n-10) + a(n-15). - G. C. Greubel, Jul 20 2016

A129739 Primes in Somos-4 sequence (A006720).

Original entry on oeis.org

2, 3, 7, 23, 59, 8209, 620297, 1687054711, 25907979805412230144914099508240296236020415269340706571266102156690578761249, 167688864076998154482920561111926793545475633249050257599724515210137245508480818512193851652306467577687209241137
Offset: 1

Views

Author

N. J. A. Sloane, May 13 2007

Keywords

Crossrefs

Cf. A192241, primes in Dana Scott's sequence (A048736).

Extensions

a(9)-a(10) from Robert G. Wilson v, Jul 04 2007

A208222 a(n) = (a(n-1)^3*a(n-3)^2+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 9, 731, 1562471573, 154486807085783774292345385804
Offset: 0

Views

Author

Matthew C. Russell, Apr 25 2012

Keywords

Comments

This is the case a=2, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)^2+y(n-2))/y(n-4): end:
    seq(y(n),n=0..9);
  • Mathematica
    a[n_]:=If[n<4,1, (a[n - 1]^3*a[n - 3]^2 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 11}] (* Indranil Ghosh, Mar 19 2017 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,(d^3 b^2+c)/a}; NestList[nxt,{1,1,1,1},10][[All,1]] (* Harvey P. Dale, May 31 2020 *)
Showing 1-10 of 27 results. Next