cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048736 Dana Scott's sequence: a(n) = (a(n-2) + a(n-1) * a(n-3)) / a(n-4), a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 13, 22, 41, 111, 191, 361, 982, 1693, 3205, 8723, 15042, 28481, 77521, 133681, 253121, 688962, 1188083, 2249605, 6123133, 10559062, 19993321, 54419231, 93843471, 177690281, 483649942, 834032173, 1579219205, 4298430243, 7412446082, 14035282561, 38202222241, 65877982561
Offset: 0

Views

Author

Keywords

Comments

The recursion has the Laurent property. If a(0), a(1), a(2), a(3) are variables, then a(n) is a Laurent polynomial (a rational function with a monic monomial denominator). - Michael Somos, Feb 05 2012
A generalization is if the recursion is modified to a(n) = (a(n-2) + a(n-1) * b*a(n-3)) / a(n-4) where b is a constant, and with arbitrary nonzero initial values, (a(0), a(1), a(2), a(3)), then a(n) = c*(a(n-3) - a(n-6)) + a(n-9) for all n in Z where c is another constant. - Michael Somos, Oct 28 2021

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 13*x^6 + 22*x^7 + 41*x^8 + 111*x^9 + ...
		

Crossrefs

Cf. A192241, A192242 (primes and where they occur).
Cf. A276531.

Programs

  • Haskell
    a048736 n = a048736_list !! n
    a048736_list = 1 : 1 : 1 : 1 :
       zipWith div
         (zipWith (+)
           (zipWith (*) (drop 3 a048736_list)
                        (drop 1 a048736_list))
           (drop 2 a048736_list))
         a048736_list
    -- Reinhard Zumkeller, Jun 26 2011
    
  • Magma
    I:=[1,1,1,1]; [n le 4 select I[n] else (Self(n-2) + Self(n-1)*Self(n-3)) / Self(n-4): n in [1..30]]; // G. C. Greubel, Feb 20 2018
  • Maple
    P:=proc(q) local n,v; v:=[1,1,1,1]; for n from 1 to q do
    v:=[op(v),(v[-2]+v[-1]*v[-3])/v[-4]] od: op(v); end: P(35); # Paolo P. Lava, Aug 24 2025
  • Mathematica
    RecurrenceTable[{a[0] == a[1] == a[2] == a[3] == 1, a[n] == (a[n - 2] + a[n - 1]a[n - 3])/a[n - 4]}, a[n], {n, 40}] (* or *) LinearRecurrence[{0, 0, 10, 0, 0, -10, 0, 0, 1}, {1, 1, 1, 1, 2, 3, 5, 13, 22}, 41] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    Vec((1+x+x^2-9*x^3-8*x^4-7*x^5+5*x^6+3*x^7+2*x^8) / (1-10*x^3+10*x^6-x^9)+O(x^99)) \\ Charles R Greathouse IV, Jul 01 2011
    

Formula

a(n) = 9*a(n-3) - a(n-6) - 3 - ( ceiling(n/3) - floor(n/3) ), with a(0) = a(1) = a(2) = a(3) = 1, a(4) = 2, a(5) = 3. - Michael Somos
From Jaume Oliver Lafont, Sep 17 2009: (Start)
a(n) = 10*a(n-3) - 10*a(n-6) + a(n-9).
G.f.: (1 + x + x^2 - 9*x^3 - 8*x^4 - 7*x^5 + 5*x^6 + 3*x^7 + 2*x^8)/(1 - 10*x^3 + 10*x^6 - x^9). (End)
a(n) = a(3-n) for all n in Z. - Michael Somos, Feb 05 2012

Extensions

More terms from Michael Somos

A129739 Primes in Somos-4 sequence (A006720).

Original entry on oeis.org

2, 3, 7, 23, 59, 8209, 620297, 1687054711, 25907979805412230144914099508240296236020415269340706571266102156690578761249, 167688864076998154482920561111926793545475633249050257599724515210137245508480818512193851652306467577687209241137
Offset: 1

Views

Author

N. J. A. Sloane, May 13 2007

Keywords

Crossrefs

Cf. A192241, primes in Dana Scott's sequence (A048736).

Extensions

a(9)-a(10) from Robert G. Wilson v, Jul 04 2007

A192242 Positions of primes within Dana Scott's sequence (A048736).

Original entry on oeis.org

4, 5, 6, 7, 9, 11, 14, 19, 25, 27, 38, 208, 289, 433, 529, 1069, 1163, 1801, 5185, 5630, 8148, 9731, 11124, 23787, 46056, 64182, 82629, 92124, 97221
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 01 2011

Keywords

Comments

A048736(a(n)) = A192241(n).
Larger entries are probable primes (BPSW plus random-base M-R). Values below a(n)=8148 have been proven prime. - Dana Jacobsen, Apr 30 2015

Programs

  • Perl
    use ntheory ":all";
    use Math::GMPz;
    my @a = map { Math::GMPz->new($_) } (1,1,1,1); for (1..100000) {  push @a, ($a[-2]+$a[-1]*$a[-3])/$a[-4];  say ++$i," $#a" if is_prime($a[-1]); }
    # Dana Jacobsen, Apr 30 2015

Extensions

More terms from Dana Jacobsen, Apr 30 2015
Showing 1-3 of 3 results.