A028935
a(n) = A006720(n)^3 (cubed terms of Somos-4 sequence).
Original entry on oeis.org
1, 1, 1, 1, 8, 27, 343, 12167, 205379, 30959144, 3574558889, 553185473329, 578280195945297, 238670664494938073, 487424450554237378792, 2035972062206737347698803, 4801616835579099275862827431
Offset: 0
-
I:=[1,1,1,1,8,27,343,12167,205379]; [n le 9 select I[n] else (129*Self(n-1)*Self(n-8) - 260*Self(n-2)*Self(n-7) - 8385*Self(n-3)*Self(n-6) + 48633*Self(n-4)*Self(n-5))/Self(n-9): n in [1..30]]; // G. C. Greubel, Feb 22 2018
-
b[n_ /; 0 <= n <= 4] = 1; b[n_]:= b[n] = (b[n-1]*b[n-3] + b[n-2]^2)/b[n -4]; Table[(b[n])^3, {n,0,30}] (* G. C. Greubel, Feb 21 2018 *)
a[n_ /; 0 <= n <= 3] = 1; a[4]:= 8; a[5]:= 27; a[6]:= 343; a[7]:= 12167; a[8]:= 205379; a[9]:= 30959144; a[n_]:= a[n] = (129*a[n-1]*a[n-8] - 260*a[n-2]*a[n-7] - 8385*a[n-3]*a[n-6] + 48633*a[n-4]*a[n-5])/a[n-9]; Table[a[n], {n,0,30}] (* G. C. Greubel, Feb 22 2018 *)
-
{b(n) = if(n< 4, 1, (b(n-1)*b(n-3) + b(n-2)^2)/b(n-4))};
for(n=0,30, print1((b(n))^3, ", ")) \\ G. C. Greubel, Feb 21 2018
A028945
a(n) = A006720(n)^2 (squared terms of Somos-4 sequence).
Original entry on oeis.org
1, 1, 1, 1, 4, 9, 49, 529, 3481, 98596, 2337841, 67387681, 6941055969, 384768368209, 61935294530404, 16063784753682169, 2846153597907293521, 2237394491744632911601, 1262082793174195430038441, 1063198259901027900600665796
Offset: 0
-
I:=[1,1,1,1,4,9,49]; [n le 7 select I[n] else (- 4*Self(n-6)*Self(n-1) + 29*Self(n-5)*Self(n-2) + 116*Self(n-4)*Self(n-3) )/Self(n-7): n in [1..30]]; // G. C. Greubel, Feb 21 2018
-
b[n_ /; 0 <= n <= 4] = 1; b[n_]:= b[n] = (b[n-1]*b[n-3] + b[n-2]^2)/b[n -4]; Table[(b[n])^2, {n,0,30}] (* G. C. Greubel, Feb 21 2018 *)
-
{b(n) = if(n< 4, 1, (b(n-1)*b(n-3) + b(n-2)^2)/b(n-4))};
for(n=0,30, print1((b(n))^2, ", ")) \\ G. C. Greubel, Feb 21 2018
A220838
Tropical version of Somos-4 sequence A006720.
Original entry on oeis.org
-1, 0, 0, 0, 1, 1, 2, 3, 3, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 22, 25, 27, 30, 33, 35, 39, 42, 45, 49, 52, 56, 60, 63, 68, 72, 76, 81, 85, 90, 95, 99, 105, 110, 115, 121, 126, 132, 138, 143, 150, 156, 162, 169, 175, 182, 189, 195, 203, 210, 217, 225, 232
Offset: 1
G.f. = -x + x^5 + x^6 + 2*x^7 + 3*x^8 + 3*x^9 + 5*x^10 + 6*x^11 + 7*x^12 + ...
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps, arXiv:1207.6072 [nlin.SI], 2012, See Example 3.6.
- A. P. Fordy, Periodic Cluster Mutations and Related Integrable Maps, arXiv preprint arXiv:1403.8061 [math-ph], 2014.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,1,-2,1).
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*( x^6-x^5+x^4-x^2+2*x-1)/((1-x)^2*(1-x^8)))); // G. C. Greubel, Aug 10 2018
-
A118825x := proc(n)
coeftayl((1-2*x+x^2)/(x^4+1),x=0,n) ;
end proc:
A056594 := proc(n)
coeftayl(1/(x^2+1),x=0,n) ;
end proc:
A220838 := proc(n)
-9/32-1/8*n+1/16*n^2+1/32*(-1)^n ;
%+A118825x(n)/4 - A056594(n+3)/8 ;
end proc:
seq(A220838(n),n=0..80) ; # R. J. Mathar, Jan 30 2013
-
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 1, -2, 1}, {-1, 0, 0, 0, 1, 1, 2, 3, 3, 5}, 62] (* Jean-François Alcover, Nov 26 2017 *)
a[ n_] := With[{m = n-1}, Floor[m^2/16] - Boole[Mod[m, 8] == 0]]; (* Michael Somos, Sep 16 2023 *)
-
{a(n) = if( n<1, n = 2-n); polcoeff( x * (x^6 - x^5 + x^4 - x^2 + 2*x - 1) / ( (1 - x)^2 * (1 - x^8) ) + x * O(x^n), n)} /* Michael Somos, Dec 27 2012 */
-
{a(n) = n--; n^2\16 - !(n%8)}; /* Michael Somos, Sep 16 2023 */
A129739
Primes in Somos-4 sequence (A006720).
Original entry on oeis.org
2, 3, 7, 23, 59, 8209, 620297, 1687054711, 25907979805412230144914099508240296236020415269340706571266102156690578761249, 167688864076998154482920561111926793545475633249050257599724515210137245508480818512193851652306467577687209241137
Offset: 1
A129741
List of primitive prime divisors of the Somos-4 sequence (A006720) in their order of occurrence.
Original entry on oeis.org
2, 3, 7, 23, 59, 157, 11, 139, 8209, 9257, 620297, 983, 4003, 1847, 9803, 1687054711, 1433, 33008447, 83, 101, 113, 51563, 61, 823, 5381, 20117, 6329, 262650531833, 197, 10259, 519606349, 2621, 11887, 136667817691, 13933, 42591667, 564188663, 211, 8802371
Offset: 1
Cf.
A227199 (primes in this sequence).
-
a[0] = a[1] = a[2] = a[3] = 1; a[n_] := a[n] = (a[n - 1] a[n - 3] + a[n - 2]^2)/a[n - 4]; t = Array[a, 30]; t2 = {}; ps = {}; Do[f = Transpose[FactorInteger[t[[n]]]][[1]]; c = Complement[f, ps]; t2 = Join[t2, c]; ps = Union[ps, c], {n, 4, 30}]; t2 (* T. D. Noe, Nov 19 2013 *)
DeleteDuplicates[DeleteCases[Flatten[FactorInteger[#][[;;,1]]&/@RecurrenceTable[{a[0]==a[1]== a[2]==a[3]==1,a[n]==(a[n-1]a[n-3]+a[n-2]^2)/a[n-4]},a,{n,30}]],1]] (* Harvey P. Dale, May 25 2024 *)
Order of some of the terms corrected by
T. D. Noe, Nov 19 2013
A254316
Hankel transform of a(n) is A006720(n+1). Hankel transform of a(n+1) is A006720(n+3).
Original entry on oeis.org
1, 1, 2, 6, 21, 78, 299, 1172, 4677, 18947, 77746, 322545, 1350906, 5704822, 24265651, 103872254, 447146683, 1934538301, 8407277728, 36685185300, 160663301053, 705974374128, 3111584887543, 13752592535137, 60939737103636, 270672216346769, 1204862348053296
Offset: 0
G.f. = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 78*x^5 + 299*x^6 + 1172*x^7 + ...
-
CoefficientList[Series[(1-2*x+x^2-Sqrt[(1-4*x+x^2)^2-4*x^3])/(2*x*(1 - x)), {x, 0, 60}], x] (* G. C. Greubel, Aug 04 2018 *)
-
{a(n) = if( n<0, 0, polcoeff( (1 - 2*x + x^2 - sqrt( (1-4*x+x^2)^2 - 4*x^3 + x^2 * O(x^n))) / (2*x*(1 - x)), n))};
A129740
Indices of primes in Somos-4 sequence (A006720).
Original entry on oeis.org
4, 5, 6, 7, 8, 11, 13, 16, 43, 52, 206, 647
Offset: 1
A151502
a(n) = A006720(n)^4 (fourth powers of Somos-4 sequence).
Original entry on oeis.org
1, 1, 1, 1, 16, 81, 2401, 279841, 12117361, 9721171216, 5465500541281, 4541099550557761, 48178257964790528961, 148046697174216601867681, 3835980708567891638880403216, 258045180612631702971803868544561, 8100590302880631846481071607248577441
Offset: 0
-
I:=[1,1,1,1]; [n le 4 select I[n] else ((Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4))^4: n in [1..15]]; // G. C. Greubel, Sep 25 2018
-
b[n_ /; 0 <= n <= 4] = 1; b[n_]:= b[n] = (b[n-1]*b[n-3] + b[n-2]^2)/b[n -4]; Table[(b[n])^4, {n, 0, 20}] (* G. C. Greubel, Sep 25 2018 *)
-
{b(n) = if(n<4, 1, (b(n-1)*b(n-3) + b(n-2)^2)/b(n-4))};
for(n=0, 20, print1((b(n))^4, ", ")) \\ G. C. Greubel, Sep 25 2018
-
b=vector(20); b[1]=b[2]=b[3]=1;b[4]=2; for(n=5, #b, b[n]=(b[n-1]*b[n-3]+b[n-2]^2)/b[n-4]); concat(1, vector(20, n, b[n]^4)) \\ Altug Alkan, Sep 25 2018
A227199
Primes that divide some term of A006720.
Original entry on oeis.org
2, 3, 7, 11, 23, 41, 47, 53, 59, 61, 71, 73, 83, 97, 101, 113, 127, 139, 149, 157, 173, 179, 181, 191, 197, 199, 211, 223, 229, 239, 257, 263, 271, 277, 281, 307, 331, 337, 347, 359, 373, 379, 383, 389, 397, 409, 419, 433, 439, 443, 463, 467, 479, 499, 509
Offset: 1
11 is in the sequence because 11 divides A006720(10) = 1529.
-
[ n : n in [2..500] | IsPrime(n) and (n ne 37) and (Order(EllipticCurve([GF(n)!0,0,1,-1,0])![0,0,1]) mod 2 eq 1) ];
A141604
Triangle, read by rows, T(n,k) = round(A006720(n)/(A006720(n-k)*A006720(k))).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 4, 7, 4, 2, 1, 1, 3, 8, 12, 12, 8, 3, 1, 1, 3, 8, 20, 15, 20, 8, 3, 1, 1, 5, 14, 45, 52, 52, 45, 14, 5, 1, 1, 5, 26, 66, 109, 170, 109, 66, 26, 5, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 2, 3, 3, 2, 1;
1, 2, 4, 7, 4, 2, 1;
1, 3, 8, 12, 12, 8, 3, 1;
1, 3, 8, 20, 15, 20, 8, 3, 1;
1, 5, 14, 45, 52, 52, 45, 14, 5, 1;
1, 5, 26, 66, 109, 170, 109, 66, 26, 5, 1;
-
A006720:= [n le 4 select 1 else (Self(n-1)*Self(n-3)+Self(n-2)^2)/Self(n-4): n in [1..30]];
A141604:= func< n,k | Round(A006720[n+1]/(A006720[k+1]*A006720[n-k+1])) >;
[A141604(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 21 2024
-
A141604 := proc(n,m)
round(A006720(n)/A006720(n-m)/A006720(m)) ;
end proc:
seq(seq(A141604(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 12 2012
-
f[n_]:= f[n]= If[n<4, 1, (f[n-1]*f[n-3] +f[n-2]^2)/f[n-4]]; (* A006720 *)
A141604[n_, k_]:= Round[f[n]/(f[k]*f[n-k])];
Table[A141604[n,k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Sep 21 2024 *)
-
def f(n): # f = A006720
if n<4: return 1
else: return (f(n-1)*f(n-3) +f(n-2)^2)/f(n-4)
def A141604(n,k): return round(f(n)/(f(k)*f(n-k)))
flatten([[A141604(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 21 2024
Showing 1-10 of 93 results.
Comments