A368052 The degree of polynomials related to Somos-4 sequences. Also for n > 2 the degree of the (n-3)-th involution in a family of involutions in the Cremona group of rank 3 defined by a Somos-4 sequence.
0, 0, 0, 0, 2, 3, 5, 8, 10, 14, 18, 22, 28, 33, 39, 46, 52, 60, 68, 76, 86, 95, 105, 116, 126, 138, 150, 162, 176, 189, 203, 218, 232, 248, 264, 280, 298, 315, 333, 352, 370, 390, 410, 430, 452, 473, 495, 518, 540, 564, 588, 612, 638, 663, 689, 716, 742, 770
Offset: 0
Links
- S. Fomin and A. Zelevinsky, The Laurent phenomenon, arXiv:math/0104241 [math.CO], 2001.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,-1,3,-3,1).
Programs
-
Mathematica
s[n_?(#>3 &)] := s[n] = Together[(s[n-1] s[n-3] + s[n-2]^2) / s[n-4]]; a[0|1|2|3] = 0; a[n_] := Exponent[Numerator[s[n]] /. {s[_] :> s}, s]; Table[a[n], {n, 0, 10}] (* or *) LinearRecurrence[{3, -3, 1, -1, 3, -3, 1}, {0, 0, 0, 0, 2, 3, 5}, 40] (* Andrey Zabolotskiy, Dec 22 2023 *) a[ n_] := If[ n>=0, SeriesCoefficient[ x^4*(2 - 3*x + 2*x^2)/((1 - x)^3*(1 + x^4)), {x, 0, n}], a[3-n]]; (* Michael Somos, Dec 27 2023 *)
-
Maxima
N : 4$ Len : 12$ /* Somos-N, N >= 2, Len = length of the calculated lists */ NofRT : floor (N / 2)$ /* number of terms in a Somos-N recurrence */ S : makelist (0, Len)$ G : makelist (0, Len)$ DegG : makelist (0, Len)$ /* G, the numerator of s() */ for i: 1 thru N do ( S[i] : s[i - 1], G[i] : 1, DegG[i] : 0 )$ for i: N + 1 thru Len do ( SS : 0, for j : 1 thru NofRT do ( SS : SS + S[i - j] * S[i - N + j] ), S[i] : factor (SS / S[i - N]), G[i] : num (S[i]), /* for N > 3 G is a homogenous polynomial, take the first monomial to determine the degree */ Mon : G[i], if N > 3 then ( Mon : args (Mon)[1] ), DegG[i] : 0, for j : 0 thru N - 1 do ( DegG[i] : DegG[i] + hipow (Mon, s[j]) ) )$ DegG;
Formula
a(n) = 1 + e(n-2) + e(n-1) + e(n) + e(n+1), where e(n) = A220838(n) is the exponent of one of the initial values in the denominator of s(n). - Andrey Zabolotskiy, Dec 22 2023
G.f.: x^4*(2 - 3*x + 2*x^2)/((1 - x)^3*(1 + x^4)). - Michael Somos, Dec 27 2023
From Helmut Ruhland, Jan 29 2024: (Start)
The growth rate is quadratic, a(n) = (1/4) * n^2 + O(n).
For n > 2: a(n) - (A345118(n-3) + 2 * A345118(n-2)) / 18 is periodic for n mod 8, i.e. a(n) = (A345118(n-3) + 2 * A345118(n-2) + f8(n)) / 18 with
n mod 8 = 0 1 2 3 4 5 6 7
f8(n) = -8 -1 0 -8 10 3 2 10 (End)
Extensions
More terms from Andrey Zabolotskiy, Dec 22 2023
Comments