cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jeremy Rouse

Jeremy Rouse's wiki page.

Jeremy Rouse has authored 3 sequences.

A259419 A Somos-4 like sequence connected with the elliptic curve y^2 + y = x^3 - 3x + 4.

Original entry on oeis.org

1, 2, 1, -3, -7, -17, 2, 101, 247, 571, -1669, -13766, -43101, -205897, 1640929, 8217293, 101727662, 173114917, -5439590147, -70987557871, -993401657957, 2105332714614, 208894282701569, 3110590234593151, 37334338699443371, -891470356091782993, -33292234868859857114
Offset: 0

Author

Jeremy Rouse, Jun 26 2015

Keywords

Comments

All the terms of the sequence are integers. Moreover, a(n)^2 is the denominator of the x-coordinate of (2n+3)P, where P = (4,7) is the point on the elliptic curve E: y^2 + y = x^3 - 3x + 4.

Examples

			If P = (4,7), then (2*4+3)*P = (-104/49, 181/343). The denominator of the x-coordinate is 49 = a(4)^2.
		

Crossrefs

Cf. A006720.

Programs

  • Mathematica
    a[ n_] := Module[ {v, m, s = 1}, m = If[ n < -1, s = -1; -3 - n, n] + 5; v = Join[{-2, -1, -1, 1, 1, 2, 1}, Table[0, {m - 7}]]; Do[ v[[k]] = (5 v[[k - 3]] v[[k - 4]] - v[[k - 1]] v[[k - 6]]) / v[[k - 7]], {k, 8, m}]; s v[[m]]]; (* Michael Somos, Aug 13 2015 *)
  • PARI
    a = vector(99); a[1]=2; a[2]=1; a[3] = -3; a[4] = -7; for(n=5,#a,if(Mod(n,3)==Mod(2,3),a[n]=(a[n-1]*a[n-3]-3*a[n-2]^2)/a[n-4],a[n]=(a[n-1]*a[n-3]-a[n-2]^2)/a[n-4])); a
    
  • PARI
    {a(n) = my(v, s=1); if( n<-1, n = -3-n; s = -1); n += 5; v = concat( [-2, -1, -1, 1, 1, 2, 1], vector( max(0, n-7))); for(k=8, n, v[k] = (5 * v[k-3] * v[k-4] - v[k-1] * v[k-6]) / v[k-7]); s * v[n]}; /* Michael Somos, Aug 13 2015 */

Formula

a(n) = (a(n-1)*a(n-3) - a(n-2)^2)/a(n-4) if n is not 2 mod 3, and a(n) = (a(n-1)*a(n-3) - 3*a(n-2)^2)/a(n-4) if n is 2 mod 3.
a(n) = - a(-3-n) for all n in Z. - Michael Somos, Aug 13 2015
a(n)*a(n+7) = -1*a(n+1)*a(n+6) +5*a(n+3)*a(n+4) for all n in Z. - Michael Somos, Aug 13 2015
a(n)*a(n+8) = -4*a(n+2)*a(n+6) +5*a(n+3)*a(n+5) for all n in Z. - Michael Somos, Aug 13 2015
Let t(n) be a strong elliptic divisibility sequence as given in [Kimberling, p. 16] where x = 5^(1/4), y = 3^(1/3), z = 1. Then a(n) = t(2*n + 3) / if( 3|n, y, 1). - Michael Somos, Aug 13 2015

A227199 Primes that divide some term of A006720.

Original entry on oeis.org

2, 3, 7, 11, 23, 41, 47, 53, 59, 61, 71, 73, 83, 97, 101, 113, 127, 139, 149, 157, 173, 179, 181, 191, 197, 199, 211, 223, 229, 239, 257, 263, 271, 277, 281, 307, 331, 337, 347, 359, 373, 379, 383, 389, 397, 409, 419, 433, 439, 443, 463, 467, 479, 499, 509
Offset: 1

Author

Jeremy Rouse, Sep 18 2013

Keywords

Comments

The density of primes in this sequence is 11/21.
If p divides A006720(n) for some n, then the smallest such n is <= (1/2)*((sqrt(p)+1)^2+3).

Examples

			11 is in the sequence because 11 divides A006720(10) = 1529.
		

Programs

  • Magma
    [ n : n in [2..500] | IsPrime(n) and (n ne 37) and (Order(EllipticCurve([GF(n)!0,0,1,-1,0])![0,0,1]) mod 2 eq 1) ];

A053587 Indices of A052344 (ways to write n as sum of two nonzero triangular numbers) where record values are reached.

Original entry on oeis.org

2, 16, 81, 471, 1056, 1381, 6906, 17956, 34531, 40056, 200281, 520731, 1001406, 1482081, 7410406, 19267056, 37052031, 60765331, 303826656, 789949306, 1519133281, 3220562556, 13429138206, 16102812781, 41867313231, 80514063906, 196454315931, 711744324931
Offset: 1

Author

Jeremy Rouse, Jan 19 2000

Keywords

Comments

The subsequence of primes begins: 2, 1381, 1519133281 [Jonathan Vos Post, Feb 01 2011].

Examples

			The order of the terms is ignored when deciding in how many ways the sum can be expressed. For example, a(2) does not equal 9, although 9 = 3 + 6 = 6 + 3.
a(2) = 16 because 16 = 1 + 15 = 6 + 10. a(3) = 81 because 81 = 3 + 78 = 15 + 66 = 36 + 55.
		

Crossrefs

Probably differs from A052348 only at n=1, 2, 4.

Extensions

More terms from Christian G. Bower, Jan 23 2000
a(25)-a(26) from Donovan Johnson, Jun 26 2010
a(27)-a(28) from Donovan Johnson, Mar 20 2013