cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133857 Numbers k such that (18^k - 1)/17 is prime.

Original entry on oeis.org

2, 25667, 28807, 142031, 157051, 180181, 414269, 1270141
Offset: 1

Views

Author

Alexander Adamchuk, Sep 28 2007

Keywords

Comments

Repunits in base 18 are off to a slow start compared with all the repunits in bases from -20 to 20. There are only 4 repunit primes in base 18 with exponents searched up to 150,000 while most other bases have 7-10 by then. Even after scaling the rate by logb logb, this is relatively low. - Paul Bourdelais, Mar 12 2010
With the discovery of a(6), this sequence of base-18 repunits is converging nicely to a rate close to Euler's constant with G=0.6667. - Paul Bourdelais, Mar 17 2010
With the discovery of a(7), G=0.54789, which is very close to the expected constant 0.56145948 mentioned in the Generalized Repunit Conjecture below. - Paul Bourdelais, Dec 08 2014

Examples

			a(1) = A084740(18) = 2,
a(2) = A128164(18) = 25667.
		

Crossrefs

Cf. A128164 (least k>2 such that (n^k-1)/(n-1) is prime).
Cf. A084740 (least k such that (n^k-1)/(n-1) is prime).
Cf. A126589 (numbers n>1 such that prime of the form (n^k-1)/(n-1) does not exist for k>2).

Programs

Extensions

a(2) = 25667 and a(3) = 28807 found by Henri Lifchitz, Sep 2007
a(4) corresponds to a probable prime discovered by Paul Bourdelais, Mar 12 2010
a(5) corresponds to a probable prime discovered by Paul Bourdelais, Mar 15 2010
a(6)=180181, previously discovered by Andy Steward in April 2007 in the form of the cyclotomic number Phi(180181,18), added by Paul Bourdelais, Mar 23 2010
a(7) corresponds to a probable prime discovered by Paul Bourdelais, Dec 08 2014
a(8) from Paul Bourdelais, Dec 02 2021