cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201946 Decimal expansion of x>0 satisfying x*sinh(x)=2.

Original entry on oeis.org

1, 2, 4, 9, 3, 9, 4, 3, 3, 6, 6, 4, 6, 3, 2, 4, 4, 7, 2, 5, 1, 1, 2, 7, 4, 3, 2, 1, 2, 6, 1, 0, 0, 8, 1, 2, 3, 4, 6, 9, 4, 4, 1, 3, 0, 0, 9, 0, 1, 5, 2, 9, 6, 9, 6, 2, 9, 7, 2, 6, 0, 7, 6, 8, 6, 8, 8, 2, 1, 2, 3, 9, 7, 3, 1, 0, 6, 2, 2, 9, 8, 3, 0, 0, 5, 3, 2, 5, 7, 7, 0, 8, 2, 8, 6, 5, 3, 9, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2011

Keywords

Comments

For many choices of u and v, there is exactly one x>0 satisfying x*sinh(u*x)=v. Guide to related sequences, with graphs included in Mathematica programs:
u.... v.... x
1.... 1.... A133867
1.... 2.... A201946
1.... 3.... A202243
2.... 1.... A202244
3.... 1.... A202245
2.... 2.... A202284
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199597, take f(x,u,v)=x*sinh(ux)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.2493943366463244725112743212610081234694...
		

Crossrefs

Cf. A201939.

Programs

  • Mathematica
    (* Program 1:  A201946 *)
    u = 1; v = 2;
    f[x_] := x*Sinh[u*x]; g[x_] := v
    Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201946 *)
    (* Program 2: implicit surface of u*sinh(x)=v *)
    f[{x_, u_, v_}] := x*Sinh[u*x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .2}]}, {v, 0, 10}, {u, 1, 4}];
    ListPlot3D[Flatten[t, 1]] (* for A201946 *)

A009341 Expansion of e.g.f. log(1 + sin(x)*x), even powers only.

Original entry on oeis.org

0, 2, -16, 366, -17704, 1467370, -185815884, 33370050910, -8067253019536, 2526062494781394, -994534162338738580, 480859837194669214150, -280103496938395910686680, 193472520727526106582807226
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A133867.

Programs

  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Log[1+Sin[x]x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Nov 27 2013 *)
  • Maxima
    a(n):=2*sum(binomial(2*n,k)*(k-1)!*(sum((2*i-k)^(2*n-k)*binomial(k,i)*(-1)^(n-i+k-1),i,0,k/2))/(2^k),k,1,2*n-1); /* Vladimir Kruchinin, Jun 28 2011 */

Formula

a(n) = 2*sum(k=1..2*n-1, binomial(2*n,k)*(k-1)!*(sum(i=0..k/2, (2*i-k)^(2*n-k)*binomial(k,i)*(-1)^(n-i+k-1)))/(2^k)). - Vladimir Kruchinin, Jun 28 2011
a(n) ~ (-1)^(n+1) * (2*n)! / (n*r^(2*n)), where r = 0.9320200293523439... (see A133867) is the root of the equation r*sinh(r)=1. - Vaclav Kotesovec, Apr 20 2014

Extensions

Extended with signs by Olivier Gérard, Mar 15 1997
Previous Mathematica program replaced by Harvey P. Dale, Nov 27 2013
Showing 1-2 of 2 results.