A133871 a(n) = the definite integral Integral_{0..1} Product_{j=1..n} 4*sin^2(Pi*j*x) dx.
2, 4, 6, 10, 12, 20, 24, 34, 44, 64, 78, 116, 148, 208, 286, 410, 556, 808, 1120, 1620, 2308, 3352, 4784, 6980, 10064, 14680, 21296, 31128, 45276, 66288, 96712, 141654, 207156, 303716, 444748, 652612, 956884, 1404920, 2062080, 3029564, 4450120
Offset: 1
Keywords
Examples
a(2) = 4 since Integral_{0..1} sin^2(Pi*x) sin^2(2*Pi*x) dx = 1/4.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000 (terms 1..174 from Robert Israel)
- Miklos Bóna, R. Gómez, M. D. Ward, Workshop in Analytic and Probabilistic Combinatorics BIRS-16w5048 2016.
- S. R. Finch, Signum equations and extremal coefficients.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- Jeffrey Gaither, Guy Louchard, Stephan Wagner, and Mark Daniel Ward, Resolution of T. Ward's Question and the Israel-Finch Conjecture: Precise Analysis of an Integer Sequence Arising in Dynamics, Combinatorics, Probability and Computing, 24 (2015), 195-215. Special Issue Honouring the Memory of Philippe Flajolet.
- S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, arXiv:0801.2082 [math.DS], 2008-2010.
- S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1819-1824.
- Yasuhiko Kamiyama, The Euler characteristic of the fiber product of Morse functions, Bull. Korean Math. Soc. (2025) Vol. 62, No. 1, pp. 71-80. See pp. 73, 75.
- Mark Daniel Ward, Resolution of T. Ward's Question and the Israel-Finch Conjecture. Precise Asymptotic Analysis of an Integer Sequence Motivated by the Dynamical Mertens' Theorem for Quasihyperbolic Toral Automorphisms, Slides, 2013.
- T. Ward, D. W. Cantrell and R. Israel, sci.math.research discussion, 2008.
Programs
-
Maple
a:= n->int(product(4*(sin(Pi*j*x))^2, j=1..n), x=0..1); seq(a(n), n=1..10); # second Maple program: A133871:= k -> (-1)^k*coeff(mul((t^j-1)^2,j=1..k),t,k*(k+1)/2); # Robert Israel, Mar 15 2013
-
Mathematica
p = 1; Table[p = Expand[p*(1 - x^n)^2]; Max[(-1)^n*CoefficientList[p, x]], {n, 1, 100}] (* Vaclav Kotesovec, May 03 2018 *) (* The constant "d" *) Chop[-E^(-I*(Pi^2*(1 + 6*x^2) - 6*PolyLog[2, E^(2*I*Pi*x)]) / (6*Pi*x)) /. x -> (x /. FindRoot[Pi*(Pi*(-1 + 6*x^2) + 12*I*x*Log[1 - E^(2*I*Pi*x)]) + 6*PolyLog[2, E^(2*I*Pi*x)], {x, 4/5}, WorkingPrecision -> 100])] (* Vaclav Kotesovec, May 04 2018 *)
-
PARI
a(n)=sum(k=0, n*(n+1)/2, polcoeff(prod(m=1, n, 1-x^m+x*O(x^k)), k)^2) \\ Paul D. Hanna
Formula
a(n) = sum of squares of coefficients in Product_{k=1..n} (1-x^k). - Paul D. Hanna, Nov 30 2010
a(n) ~ c * d^n / sqrt(n), where d = 1.48770584269062356180051131... and c = 2.40574583936181024... [Ward, 2013]. - Vaclav Kotesovec, May 03 2018
Extensions
More terms from Steven Finch, Feb 03 2009
Comments