A133886 a(n) = binomial(n+6,n) mod 6.
1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3, 3, 0, 0, 4, 4, 4, 0, 3, 3, 0, 0, 0, 4, 4, 4, 3, 3, 0, 0, 0, 0, 4, 4, 1, 3, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 0, 3, 1, 4, 4, 0, 0, 0, 0, 3, 3, 4, 4, 4, 0, 0, 0, 3, 3, 0, 4, 4, 4, 0, 0, 3
Offset: 0
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1).
Crossrefs
Programs
-
Maple
A133886:=n->binomial(n+6,6) mod 6; seq(A133886(n), n=0..100); # Wesley Ivan Hurt, Apr 30 2014
-
Mathematica
Table[Mod[Binomial[n+6,n],6],{n,0,110}] (* Harvey P. Dale, May 04 2013 *)
Formula
a(n) = binomial(n+6,6) mod 6.
G.f.: g(x) = (1+x+4*x^2-6*x^9-6*x^56+4*x^63+x^64+x^65+3*x^8*(1+x)(1-x^56)/(1-x^8)+4*x^9(1+x+x^2)(1-x^54)/(1-x^9))/(1-x^72).
a(n) = a(n-1)-a(n-2)+a(n-8)+a(n-11)-a(n-17)-a(n-20)-a(n-24)+a(n-25)+a(n-29)+ a(n-32)- a(n-38)-a(n-41)+a(n-47)-a(n-48)+a(n-49). - Harvey P. Dale, May 04 2013
Comments