cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A133900 a(n) = period of the sequence {b(m), m>=0}, defined by b(m):=binomial(m+n,n) mod n.

Original entry on oeis.org

1, 4, 9, 16, 25, 72, 49, 64, 81, 400, 121, 864, 169, 784, 675, 256, 289, 2592, 361, 1600, 1323, 3872, 529, 3456, 625, 5408, 729, 3136, 841, 324000, 961, 1024, 9801, 18496, 6125, 31104, 1369, 23104, 13689, 32000, 1681, 254016, 1849, 15488, 30375, 33856
Offset: 1

Views

Author

Hieronymus Fischer, Oct 15 2007, Oct 20 2007

Keywords

Comments

This is the analog of the sequence of Pisano periods (A001175) for binomial factors.
n^2 always divides a(n).
A prime p is a factor of a(n) if and only if it is a factor of n (i.e., a(n) and n have the same prime factors).

Examples

			a(3)=9 since binomial(m+3,3) mod 3, m>=0, is periodic with period length 3^2=9 (see A133883).
a(6)=72 since binomial(m+6,6) mod 6, m>=0, is periodic with period length 4*6^2=72 (see A133886).
		

Crossrefs

Formula

a(n)=n^2 if n is a prime or a power of a prime.

A133636 Nonprime numbers k such that binomial(k+p,k) mod k = 1, where p=6.

Original entry on oeis.org

9, 27, 49, 63, 77, 81, 91, 99, 117, 119, 121, 133, 143, 153, 161, 169, 171, 187, 189, 203, 207, 209, 217, 221, 243, 247, 253, 259, 261, 279, 287, 289, 297, 299, 301, 319, 323, 329, 333, 341, 343, 351, 361, 369, 371, 377, 387, 391, 403, 407, 413, 423, 427, 437
Offset: 1

Views

Author

Hieronymus Fischer, Sep 30 2007

Keywords

Comments

Also composite n such that binomial(7*n,7)== n (mod n^2). - Gary Detlefs, Sep 24 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[500],CompositeQ[#]&&Mod[Binomial[#+6,#],#]==1&] (* Harvey P. Dale, Jan 30 2025 *)
  • PARI
    isok(n) = ! isprime(n) && ((binomial(n+6, n) % n) == 1); \\ Michel Marcus, Sep 25 2013
    
  • PARI
    isok(n) = ! isprime(n) && ((binomial(7*n, 7) % n^2) == n); \\ Michel Marcus, Sep 25 2013

A133876 n modulo 6 repeated 6 times.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 0, 0, 0
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 6^2=36.

Crossrefs

Programs

  • Mathematica
    Table[PadRight[{},6,Mod[n,6]],{n,20}]//Flatten (* Harvey P. Dale, Nov 15 2023 *)

Formula

a(n)=(1+floor(n/6)) mod 6.
a(n)=1+floor(n/6)-6*floor((n+6)/36).
a(n)=(((n+6) mod 36)-(n mod 6))/6.
a(n)=((n+6-(n mod 6))/6) mod 6.
G.f. g(x)=(1-x^6)(1+2x^5+3x^12+4x^18+5x^24)/((1-x)(1-x^36)).
G.f. g(x)=(5x^36-6x^30+1)/((1-x)(1-x^6)(1-x^36)).

A133891 a(n) = binomial(n+p,n) mod p, where p=12.

Original entry on oeis.org

1, 1, 7, 11, 8, 8, 0, 0, 6, 2, 2, 2, 4, 4, 4, 0, 3, 3, 9, 9, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 8, 8, 5, 9, 3, 3, 8, 8, 8, 4, 10, 10, 6, 6, 0, 0, 0, 0, 3, 3, 9, 9, 0, 0, 4, 4, 4, 8, 8, 8, 0, 0, 0, 8, 5, 5, 7, 7, 4, 0, 0, 0, 6, 6, 6, 6, 0, 0, 0, 0, 3, 7, 1, 1, 8, 8, 8, 0, 0, 0, 8, 8, 8, 4, 4, 4, 9, 9, 3, 3, 0, 0, 0, 0
Offset: 0

Views

Author

Hieronymus Fischer, Oct 16 2007

Keywords

Comments

Periodic with length 6*12^2 = 864 = A133900(12).

Crossrefs

See A133872, A133873, A133875, A133877, A133884, A133886, A133888, A133889, A133890 for sequences with different values of p.
See A133900 for the respective periods regarding other values of p.

Programs

  • Mathematica
    Table[Mod[Binomial[n+12,n],12],{n,0,110}] (* Harvey P. Dale, Oct 13 2017 *)

Formula

a(n) = binomial(n+12,12) mod 12.

A133896 Numbers m such that binomial(m+6,m) mod 6 = 0.

Original entry on oeis.org

3, 4, 5, 6, 7, 12, 13, 14, 15, 21, 22, 23, 26, 30, 31, 34, 35, 39, 42, 43, 44, 50, 51, 52, 53, 58, 59, 60, 61, 62, 66, 67, 68, 69, 70, 71, 75, 76, 77, 78, 79, 84, 85, 86, 87, 93, 94, 95, 98, 102, 103, 106, 107, 111, 114, 115, 116, 122, 123, 124, 125, 130, 131, 132, 133, 134
Offset: 0

Views

Author

Hieronymus Fischer, Oct 20 2007

Keywords

Comments

Partial sums of the sequence 3,1,1,1,1,5,1,1,1,6,1,1,3,4,1,3,1,4,3,1,1,6,1,1,1,5,1,1,1,1,4,1,1,1,1,1,4, ... which has period 36.

Crossrefs

Programs

  • Mathematica
    Select[Range[140], Mod[Binomial[# + 6, #], 6] == 0&] (* Jean-François Alcover, Nov 12 2017 *)
  • PARI
    isok(n) = !(binomial(n+6, n) % 6); \\ Michel Marcus, Nov 12 2017

Formula

G.f.: g(x)=3/(1-x)+ x/(1-x)^2+(4x^5+5x^9+2x^12+3x^13+2x^15+3x^17+2x^18+5x^21+3x^26+3x^32) /((1-x^36)(1-x)).
G.f.: g(x)=(3-2x+4x^5+5x^9+2x^12+3x^13+2x^15+3x^17+2x^18+5x^21+3x^26+3x^32-x^37) /((1-x^36)(1-x)^2).
Showing 1-5 of 5 results.