A133878 n modulo 8 repeated 8 times.
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6
Offset: 0
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 1).
Crossrefs
Programs
-
Mathematica
Flatten[Join[Table[PadRight[{},8,n],{n,7}],Table[PadRight[{},8,n],{n,0,7}]]] (* Harvey P. Dale, Nov 06 2011 *)
Formula
a(n)=(1+floor(n/8)) mod 8.
a(n)=1+floor(n/8)-8*floor((n+8)/64).
a(n)=(((n+8) mod 64)-(n mod 8))/8.
a(n)=((n+8-(n mod 8))/8) mod 8.
G.f. g(x)=(1-x^8)(1+2x^8+3x^16+4x^24+5x^32+6x^40+7x^48)/((1-x)(1-x^64)).
G.f. g(x)=(1-x^8)*sum{0<=k<7, (k+1)*x^(8*k)}/((1-x)(1-x^64)).
G.f. g(x)=(7x^64-8x^56+1)/((1-x)(1-x^8)(1-x^64)).
Comments