cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133922 a(n) is number of permutations (p(1),p(2),p(3),...,p(n)) of (1,2,3,...,n) such that p(k) is coprime to p(n+1-k) for k = all positive integers <= n.

Original entry on oeis.org

1, 2, 2, 16, 16, 192, 192, 6912, 4608, 230400, 230400, 11612160, 11612160, 1199923200, 588349440, 98594979840, 98594979840, 11076328488960, 11076328488960, 2102897147904000, 1076597725593600, 331238941183180800, 331238941183180800, 66325953940291584000, 56326771107377971200
Offset: 1

Views

Author

Leroy Quet, Jan 07 2008

Keywords

Comments

For n = odd integer the middle term of all counted permutations must be 1.
From Robert Israel, Sep 12 2016: (Start)
Consider the graph with vertices [1,...,n] if n is even, [2,...,n] if n is odd, and edges joining coprime integers.
a(n) is A037223(n) times the number of perfect matchings in this graph.
If n is even, a(n) = A037223(n)*A009679(n/2).
If n is an odd prime, a(n) = a(n-1). (End)

Examples

			For n = 6, the permutation (3,2,1,6,4,5) is not counted because p(2)=2 is not coprime to p(5)=4. However, the permutation (3,6,1,4,5,2) is counted because GCD(3,2) = GCD(6,5) = GCD(1,4) = 1.
		

Crossrefs

Programs

  • Maple
    M:= proc(A) option remember;
        local n,t,i,Ai,Ap,inds,isrt,As;
        n:= nops(A);
        if n = 0 then return 1 fi;
        t:= 0;
        for i in A[1] do
          inds:= [$2..i-1,$i+1..n];
          Ai:= subs([1=NULL,i=NULL,seq(inds[i]=i,i=1..n-2)],A[inds]);
          isrt:= sort([$1..n-2],(r,s) -> nops(Ai(r)) <= nops(Ai(s)),output=permutation);
          Ai:= subs([seq(isrt[i]=i,i=1..n-2)],Ai[isrt]);
          t:= t + procname(Ai);
        od;
        t;
    end proc:
    F:= proc(n) local A;
      if n::odd then
        if isprime(n) then return procname(n-1) fi;
        A:= [seq(select(t -> igcd(t+1,i+1)=1, [$1..i-1,$i+1..n-1]),i=1..n-1)];
      else
        A:= [seq(select(t -> igcd(t,i)=1,[$1..i-1,$i+1..n]),i=1..n)]
      fi;
      M(A)*floor(n/2)!*2^floor(n/2)
    end proc;
    seq(F(n),n=1..27); # Robert Israel, Sep 12 2016

Extensions

a(6)-a(15) from Sean A. Irvine, May 17 2010
a(16)-a(25) from Robert Israel, Sep 12 2016