cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133940 Numbers n such that (prime(n)^2 + prime(n+1)^2 + prime(n+2)^2)/3 is prime (A084951).

Original entry on oeis.org

4, 5, 8, 13, 15, 26, 46, 47, 50, 55, 57, 59, 61, 65, 66, 69, 77, 82, 89, 91, 94, 101, 105, 116, 134, 136, 137, 138, 144, 157, 194, 216, 219, 221, 224, 225, 229, 230, 234, 249, 257, 261, 263, 271, 272, 275, 306, 316, 319, 323
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2007

Keywords

Comments

With the exception of the first two terms, all numbers in A133529 are divisible by 3.

Examples

			a(1)=4 because (prime(4)^2 + prime(5)^2 + prime(6)^2)/3 = 113 is prime.
		

Crossrefs

Programs

  • Maple
    select(n -> isprime((ithprime(n)^2 + ithprime(n+1)^2 + ithprime(n+2)^2)/3), [$3 .. 1000]); # Robert Israel, Apr 21 2015
  • Mathematica
    b = {}; a = 2; Do[k = (Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a)/3; If[PrimeQ[k], AppendTo[b, n]], {n, 1, 200}]; b
  • PARI
    is(n)=my(p=prime(n),q=nextprime(p+1),r=nextprime(q+1)); n>3 && isprime((p^2+q^2+r^2)/3) \\ Charles R Greathouse IV, Apr 21 2015

Extensions

Corrected and edited by Zak Seidov, Apr 21 2015