cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084951 Primes in A075893: Primes of the form (p^2+q^2+r^2)/3, where p,q,r are 3 consecutive primes.

Original entry on oeis.org

113, 193, 577, 1913, 2833, 10753, 44617, 48593, 54617, 69193, 74177, 78593, 86729, 102673, 107873, 122273, 156577, 183497, 214993, 228233, 247697, 308809, 334513, 414313, 581177, 602753, 617369, 636353, 691697, 861857, 1408993, 1786097
Offset: 1

Views

Author

Hugo Pfoertner, Jun 14 2003

Keywords

Comments

With the exception of 2^2+3^2+5^2=38 and 3^2+5^2+7^2=83 all sums of squares of 3 consecutive primes are divisible by 3 because mod(p^2,3)=1 for all primes p>3.

Examples

			a(1)=113 because (7^2+11^2+13^2)/3=(49+121+169)/3=339/3=113 is prime.
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = 2; Do[k = (Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a)/3; If[PrimeQ[k], AppendTo[b, n]], {n, 1, 200}]; b (* Artur Jasinski, Sep 30 2007 *)
  • PARI
    v=vector(10000);i=0;p=5;q=7; forprime(r=8,1e8,if(isprime(t=(p^2+q^2+r^2)/3), v[i++]=t; if(i==#v,return)); p=q; q=r) \\ Charles R Greathouse IV, Feb 14 2011

Extensions

Edited by N. J. A. Sloane, Jun 30 2008 at the suggestion of R. J. Mathar.

A075893 Average of three successive primes squared, (prime(n)^2+prime(n+1)^2+prime(n+2)^2)/3, n>=3.

Original entry on oeis.org

65, 113, 193, 273, 393, 577, 777, 1057, 1337, 1633, 1913, 2289, 2833, 3337, 3897, 4417, 4953, 5537, 6153, 7017, 8073, 9177, 10073, 10753, 11313, 12033, 13593, 15353, 17353, 18417, 20097, 21441, 23217, 24673, 26369, 28129, 29953, 31577, 33761
Offset: 3

Views

Author

Zak Seidov, Oct 17 2002

Keywords

Comments

Unlike the average of three successive primes, the average of three successive primes (greater than 3) squared is always integral.
A133529(n)/3, n >= 3. - Artur Jasinski, Sep 30 2007

Examples

			a(3)=65 because (prime(3)^2+prime(4)^2+prime(5)^2)/3=(5^2+7^2+11^2)/3=65.
		

Crossrefs

Programs

  • Magma
    [(NthPrime(n)^2+NthPrime(n+1)^2+NthPrime(n+2)^2)/3: n in [3..50]]; // Vincenzo Librandi, Aug 21 2018
  • Mathematica
    b = {}; a = 2; Do[k = (Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a)/3; AppendTo[b, k], {n, 3, 50}]; b (* Artur Jasinski, Sep 30 2007 *)
    Mean[#]&/@Partition[Prime[Range[3,50]]^2,3,1] (* Harvey P. Dale, Jun 09 2013 *)

Formula

a(n) = (prime(n)^2+prime(n+1)^2+prime(n+2)^2)/3, n>=3.

Extensions

Edited by N. J. A. Sloane, Jun 30 2008 at the suggestion of R. J. Mathar
Showing 1-2 of 2 results.