A084951 Primes in A075893: Primes of the form (p^2+q^2+r^2)/3, where p,q,r are 3 consecutive primes.
113, 193, 577, 1913, 2833, 10753, 44617, 48593, 54617, 69193, 74177, 78593, 86729, 102673, 107873, 122273, 156577, 183497, 214993, 228233, 247697, 308809, 334513, 414313, 581177, 602753, 617369, 636353, 691697, 861857, 1408993, 1786097
Offset: 1
Examples
a(1)=113 because (7^2+11^2+13^2)/3=(49+121+169)/3=339/3=113 is prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
b = {}; a = 2; Do[k = (Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a)/3; If[PrimeQ[k], AppendTo[b, n]], {n, 1, 200}]; b (* Artur Jasinski, Sep 30 2007 *)
-
PARI
v=vector(10000);i=0;p=5;q=7; forprime(r=8,1e8,if(isprime(t=(p^2+q^2+r^2)/3), v[i++]=t; if(i==#v,return)); p=q; q=r) \\ Charles R Greathouse IV, Feb 14 2011
Extensions
Edited by N. J. A. Sloane, Jun 30 2008 at the suggestion of R. J. Mathar.
Comments