cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154530 Primes that are a concatenation of 2*k and 2*k+1 or 2*k and 2*k-1 for some k.

Original entry on oeis.org

23, 43, 67, 89, 109, 1213, 2221, 2423, 3433, 3637, 4241, 4243, 5051, 5657, 5857, 6263, 6869, 7069, 7877, 7879, 8081, 8887, 9091, 9293, 9697, 10099, 102101, 102103, 108107, 108109, 112111, 114113, 120121, 124123, 126127, 138139, 148147, 150151
Offset: 1

Views

Author

Pierre CAMI, Jan 11 2009

Keywords

Examples

			2*1=2, 2*1+1=3, and 23 the concatenation of 2 and 3 is prime, so a(1)=23
		

Crossrefs

Cf. A010051, subsequence of A248378.

Programs

  • Haskell
    a154530 n = a154530_list !! (n-1)
    a154530_list = filter ((== 1) . a010051') a248378_list
    -- Reinhard Zumkeller, Jun 27 2015

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A154531 Primes that are a concatenation of consecutive primes in two ways.

Original entry on oeis.org

199211, 211199, 233239, 239233, 257263, 263257, 353359, 359353, 523541, 541523, 653659, 659653, 971977, 977971, 19731979, 19791973, 23332339, 23392333, 32593271, 32713259, 36373643, 36433637, 37613767, 37673761, 42834289, 42894283, 49934999, 49994993
Offset: 1

Views

Author

Pierre CAMI, Jan 11 2009

Keywords

Examples

			233 and 239 consecutive primes, 233239 and 239233 are both primes.
		

Crossrefs

Programs

  • Mathematica
    ccp2[{a_,b_}]:=Module[{c=a*10^IntegerLength[b]+b,d=b*10^IntegerLength[a]+ a}, If[ AllTrue[ {c,d}, PrimeQ],{c,d},{}]]; ccp2/@Partition[Prime[ Range[ 1000]],2,1]//Flatten (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 20 2017 *)

Extensions

Corrected by Harvey P. Dale, Feb 20 2017
Showing 1-2 of 2 results.