cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134058 Triangle T(n, k) = 2*binomial(n, k) with T(0, 0) = 1, read by rows.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2
Offset: 0

Views

Author

Gary W. Adamson, Oct 05 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [2, -1, 0, 0, 0, 0, 0, ...] DELTA [2, -1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
Equals A028326 for all but the first term. - R. J. Mathar, Jun 08 2008
Warning: the row sums do not give A046055. - N. J. A. Sloane, Jul 08 2009

Examples

			First few rows of the triangle:
  1
  2,  2;
  2,  4,  2;
  2,  6,  6,  2;
  2,  8, 12,  8,  2;
  2, 10, 20, 20, 10,  2;
  ...
		

Crossrefs

Programs

  • Magma
    A134058:= func< n,k | n eq 0 select 1 else 2*Binomial(n,k) >;
    [A134058(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2021
    
  • Mathematica
    T[n_, k_]:= SeriesCoefficient[(1+x+y)/(1-x-y), {x, 0, n-k}, {y, 0, k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Apr 09 2015, after Vladimir Kruchinin *)
    Table[2*Binomial[n,k] -Boole[n==0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 26 2021 *)
  • Sage
    def A134058(n,k): return 2*binomial(n,k) - bool(n==0)
    flatten([[A134058(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2021

Formula

Double Pascal's triangle and replace leftmost column with (1,2,2,2,...).
M*A007318, where M = an infinite lower triangular matrix with (1,2,2,2,...) in the main diagonal and the rest zeros.
Sum_{k=0..n} T(n,k) = A151821(n+1). - Philippe Deléham, Sep 17 2009
G.f.: (1+x+y)/(1-x-y). - Vladimir Kruchinin, Apr 09 2015
T(n, k) = 2*binomial(n, k) - [n=0]. - G. C. Greubel, Apr 26 2021
E.g.f.: 2*exp(x*(1+y)) - 1. - Stefano Spezia, Apr 03 2024

Extensions

Title changed by G. C. Greubel, Apr 26 2021