A134058 Triangle T(n, k) = 2*binomial(n, k) with T(0, 0) = 1, read by rows.
1, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2
Offset: 0
Examples
First few rows of the triangle: 1 2, 2; 2, 4, 2; 2, 6, 6, 2; 2, 8, 12, 8, 2; 2, 10, 20, 20, 10, 2; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A134058:= func< n,k | n eq 0 select 1 else 2*Binomial(n,k) >; [A134058(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2021
-
Mathematica
T[n_, k_]:= SeriesCoefficient[(1+x+y)/(1-x-y), {x, 0, n-k}, {y, 0, k}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Apr 09 2015, after Vladimir Kruchinin *) Table[2*Binomial[n,k] -Boole[n==0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 26 2021 *)
-
Sage
def A134058(n,k): return 2*binomial(n,k) - bool(n==0) flatten([[A134058(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2021
Formula
Double Pascal's triangle and replace leftmost column with (1,2,2,2,...).
M*A007318, where M = an infinite lower triangular matrix with (1,2,2,2,...) in the main diagonal and the rest zeros.
Sum_{k=0..n} T(n,k) = A151821(n+1). - Philippe Deléham, Sep 17 2009
G.f.: (1+x+y)/(1-x-y). - Vladimir Kruchinin, Apr 09 2015
T(n, k) = 2*binomial(n, k) - [n=0]. - G. C. Greubel, Apr 26 2021
E.g.f.: 2*exp(x*(1+y)) - 1. - Stefano Spezia, Apr 03 2024
Extensions
Title changed by G. C. Greubel, Apr 26 2021
Comments