A134125 Integral quotients of partial sums of primes divided by the number of summations.
5, 5, 7, 11, 16, 107, 338, 1011, 2249, 22582, 35989, 39167, 61019, 186504, 248776, 367842, 977511, 1790714, 7104697, 15450640, 42428590, 81262621, 232483021, 319278215, 364554172, 419271517, 4432367717, 14591939203, 46911464601, 78572862347, 277369665793, 281386467553
Offset: 1
Keywords
Examples
a(1) = 5 because 2+3 = 5 and 5/1 = 5, an integral quotient. a(3) = A007504(5)/4 = 28/4 = 7. a(4) = A007504(8)/7 = 77/7 = 11.
Programs
-
Mathematica
With[{nn=50000000},Select[Rest[Accumulate[Prime[Range[nn]]]]/Range[nn-1],IntegerQ]] (* Harvey P. Dale, Jul 25 2013 *)
-
PARI
lista(pmax) = {my(k = 0, s = 2); forprime(p = 3, pmax, k++; s += p; if(!(s % k), print1(s/k, ", ")));} \\ Amiram Eldar, Apr 30 2024
-
UBASIC
10 'primes using counters 20 N=3:C=1:R=5:print 2;3,5 30 A=3:S=sqrt(N) 40 B=N\A 50 if B*A=N then N=N+2:goto 30 60 A=A+2:O=A 70 if A<=sqrt(N) then 40 80 C=C+1 90 R=R+N:T=R/C:U=R-N 100 if T=int(T) then print C;U;N;R;T:stop 110 N=N+2:goto 30
Extensions
a(21) from R. J. Mathar, Oct 23 2007
Edited by R. J. Mathar, Apr 17 2009
a(22)-a(29) from Max Alekseyev, Jan 28 2012
a(30)-a(32) from Amiram Eldar, Apr 30 2024
Comments