A134166 Complete list of solutions to y^2 = x^3 + 1025; sequence gives y values.
5, 30, 31, 32, 33, 45, 95, 255, 355, 513, 1930, 2139, 9419, 27905, 218796, 227805
Offset: 1
Examples
a(1)^2 = 5^2 = 25 = A134167(1)^3 + 1025 = -1000 + 1025. a(2)^2 = 30^2 = 900 = A134167(2)^3 + 1025 = -125 + 1025. a(3)^2 = 31^2 = 961 = A134167(3)^3 + 1025 = -64 + 1025. a(4)^2 = 32^2 = 1024 = A134167(4)^3 + 1025 = -1 + 1025. a(5)^2 = 33^2 = 1089 = A134167(5)^3 + 1025 = 64 + 1025. a(6)^2 = 45^2 = 2025 = A134167(6)^3 + 1025 = 1000 + 1025. a(7)^2 = 95^2 = 9025 = A134167(7)^3 + 1025 = 8000 + 1025. a(8)^2 = 255^2 = 65025 = A134167(8)^3 + 1025 = 64000 + 1025. a(9)^2 = 355^2 = 126025 = A134167(9)^3 + 1025 = 125000 + 1025. a(10)^2 = 513^2 = 263169 = A134167(10)^3 + 1025 = 262144 + 1025. a(11)^2 = 1930^2 = 3724900 = A134167(11)^3 + 1025 = 3723875 + 1025. a(12)^2 = 2139^2 = 4575321 = A134167(12)^3 + 1025 = 4574296 + 1025. a(13)^2 = 9419^2 = 88717561 = A134167(13)^3 + 1025 = 88716536 + 1025. a(14)^2 = 27905^2 = 778689025 = A134167(14)^3 + 1025 = 778688000 + 1025. a(15)^2 = 218796^2 = 47871689616 = A134167(15)^3 + 1025 = 47871688591 + 1025. a(16)^2 = 227805^2 = 51895118025 = A134167(16)^3 + 1025 = 51895117000 + 1025.
Programs
-
Magma
{ x : x in Sort([ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, 1025])) ]) }; /* adapted from A029727 */
-
Mathematica
Select[Table[Sqrt[1025+n^3],{n,-10,20000}],IntegerQ] (* Harvey P. Dale, Jan 21 2023 *)
Comments