A134193 a(1) = 1; for n>1, a(n) = the smallest positive integer not occurring among the exponents in the prime-factorization of n.
1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 2, 2
Offset: 1
Keywords
Examples
The prime factorization of 24 is 2^3 * 3^1. The exponents are 3 and 1. Therefore a(24) = 2 is the smallest positive integer not occurring among (3,1).
Links
Programs
-
Mathematica
Join[{1}, Table[Complement[Range[n], Table[FactorInteger[n][[i, 2]], {i, 1, Length[FactorInteger[n]]}]][[1]], {n, 2, 120}]] (* Stefan Steinerberger, Jan 21 2008 *)
-
PARI
a(n) = if (n==1, 1, my(f=factor(n)); ve = vecsort(f[,2],,8); k = 1; while(vecsearch(ve, k), k++); k;); \\ Michel Marcus, Jul 28 2017
-
Scheme
(define (A134193 n) (A257993 (A181819 n))) ;; Antti Karttunen, Jul 28 2017
Formula
Extensions
More terms from Stefan Steinerberger, Jan 21 2008
Comments