cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134193 a(1) = 1; for n>1, a(n) = the smallest positive integer not occurring among the exponents in the prime-factorization of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 1, 3, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Leroy Quet, Jan 13 2008

Keywords

Comments

From Amiram Eldar, Jun 30 2025: (Start)
The first position of k = 1, 2, 3, ... is A006939(k-1).
Let d(k) be the asymptotic density of the occurrences of k = 1, 2, ... in this sequence.
d(1) = 0 = the density of the powerful numbers (A001694).
d(2) = Product_{primes p} (1 - 1/p^2 + 1/p^3) = 0.748535... (A330596) = the density of A337050.
d(3) = Product_{primes p} (1 - 1/p^3 + 1/p^4) - Product_{primes p} (1 - 1/p^2 + 1/p^4) = 0.23548870893364493209...
d(4) = Product_{primes p} (1 - 1/p^4 + 1/p^5) - Product_{primes p} (1 - 1/p^3 + 1/p^5) - Product_{primes p} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5) + Product_{primes p} (1 - 1/p^2 + 1/p^5) = 0.01580134256336122613... .
d(5) = 0.000174471282..., d(6) = 0.000000217516..., etc.
In general, d(k) = Sum_{s subset of {2, 3, ..., k-1}} (-1)^card(s) * Product_{p prime} (1 -Sum_{i=1..card(s)} 1/p^s(i) + 1/p^(s(i)+1) - 1/p^k + 1/p^(k+1)).
The asymptotic mean of this sequence is Sum_{k>=1} k*d(k) = 2.26761567808299143335... . (End)

Examples

			The prime factorization of 24 is 2^3 * 3^1. The exponents are 3 and 1. Therefore a(24) = 2 is the smallest positive integer not occurring among (3,1).
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Complement[Range[n], Table[FactorInteger[n][[i, 2]], {i, 1, Length[FactorInteger[n]]}]][[1]], {n, 2, 120}]] (* Stefan Steinerberger, Jan 21 2008 *)
  • PARI
    a(n) = if (n==1, 1, my(f=factor(n)); ve = vecsort(f[,2],,8); k = 1; while(vecsearch(ve, k), k++); k;); \\ Michel Marcus, Jul 28 2017
  • Scheme
    (define (A134193 n) (A257993 (A181819 n))) ;; Antti Karttunen, Jul 28 2017
    

Formula

a(n) = A257993(A181819(n)). - Antti Karttunen, Jul 28 2017

Extensions

More terms from Stefan Steinerberger, Jan 21 2008