A134289 Eighth column (and diagonal) of Narayana triangle A001263.
1, 36, 540, 4950, 32670, 169884, 736164, 2760615, 9202050, 27810640, 77364144, 200443464, 488259720, 1126753200, 2478857040, 5226256926, 10606227291, 20796524100, 39525557500, 73018266750, 131432880150, 231003243900, 397179490500, 669161098125, 1106346348900
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> Binomial(n+8,8)*Binomial(n+7,6)/7); # G. C. Greubel, Aug 28 2019
-
Magma
[Binomial(n+8,8)*Binomial(n+7,6)/7: n in [0..30]]; // G. C. Greubel, Aug 28 2019
-
Maple
a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7))^2*(n+8))/203212800; seq(a(n), n=0..24); # Peter Luschny, Sep 01 2016
-
Mathematica
Table[(Binomial[n + 8, 8] Binomial[n + 8, 7])/(n + 8), {n, 0, 30}] (* or *) LinearRecurrence[{15, -105, 455, -1365, 3003, -5005, 6435, -6435, 5005, -3003, 1365, -455, 105, -15, 1},{1, 36, 540, 4950, 32670, 169884, 736164, 2760615, 9202050, 27810640, 77364144, 200443464, 488259720, 1126753200, 2478857040}, 30] (* Harvey P. Dale, Jul 23 2012 *)
-
PARI
vector(30, n, binomial(n+7,8)*binomial(n+6,6)/7) \\ G. C. Greubel, Aug 28 2019
-
Sage
[binomial(n+8,8)*binomial(n+7,6)/7 for n in (0..30)] # G. C. Greubel, Aug 28 2019
Formula
a(n) = A001263(n+8,8) = binomial(n+8,8)*binomial(n+8,7)/(n+8).
O.g.f.: P(7,x)/(1-x)^15 with the numerator polynomial P(7,x) = Sum_{k=1..7} A001263(7,k)*x^(k-1), the seventh row polynomial of the Narayana triangle: P(7,x) = 1 + 21*x + 105*x^2 + 175*x^3 + 105*x^4 + 21*x^5 + x^6.
For n>14: a(n) = 15*a(n-1) - 105*a(n-2) + 455*a(n-3) - 1365*a(n-4) + 3003*a(n-5) - 5005*a(n-6) + 6435*a(n-7) - 6435*a(n-8) + 5005*a(n-9) - 3003*a(n-10) + 1365*a(n-11) - 455*a(n-12) + 105*a(n-13) - 15*a(n-14) + a(n-15). - Harvey P. Dale, Jul 23 2012
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 12767346/25 - 51744*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 1192508/75 - 114688*log(2)/5. (End)
Comments