A134291 Tenth column (and diagonal) of Narayana triangle A001263.
1, 55, 1210, 15730, 143143, 1002001, 5725720, 27810640, 118195220, 449141836, 1551580888, 4936848280, 14620666060, 40648664980, 106847919376, 267119798440, 638337753625, 1464421905375, 3237143159250, 6917263803450
Offset: 0
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 25.
Programs
-
GAP
List([0..30], n-> Binomial(n+10,10)*Binomial(n+9,8)/9); # G. C. Greubel, Aug 28 2019
-
Magma
[Binomial(n+10,10)*Binomial(n+9,8)/9: n in [0..30]]; // G. C. Greubel, Aug 28 2019
-
Maple
a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9))^2*(n+10))/ 1316818944000: seq(a(n), n=0..19); # Peter Luschny, Sep 01 2016
-
Mathematica
Table[Binomial[n + 10, 10]*Binomial[n + 10, 9]/(n + 10), {n, 0, 30}] (* Wesley Ivan Hurt, Apr 25 2017 *)
-
PARI
vector(30, n, binomial(n+9,10)*binomial(n+8,8)/9) \\ G. C. Greubel, Aug 28 2019
-
Sage
[binomial(n+10,10)*binomial(n+9,8)/9 for n in (0..30)] # G. C. Greubel, Aug 28 2019
Formula
a(n) = A001263(n+10,10) = binomial(n+10,10)*binomial(n+10,9)/(n+10).
O.g.f.: P(9,x)/(1-x)^19 with the numerator polynomial P(9,x) = Sum_{k=1..9} A001263(9,k)*x^(k-1), the ninth row polynomial of the Narayana triangle: P(9,x) = 1 + 36*x + 336*x^2 + 1176*x^3 + 1764*x^4 + 1176*x^5 + 336*x^6 + 36*x^7 + x^8.
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 2987553139/196 - 1544400*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 1179648*log(2)/7 - 114472793/980. (End)
Comments