cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134291 Tenth column (and diagonal) of Narayana triangle A001263.

Original entry on oeis.org

1, 55, 1210, 15730, 143143, 1002001, 5725720, 27810640, 118195220, 449141836, 1551580888, 4936848280, 14620666060, 40648664980, 106847919376, 267119798440, 638337753625, 1464421905375, 3237143159250, 6917263803450
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

See a comment under A134288 on the coincidence of column and diagonal sequences.
Kekulé numbers K(O(1,9,n)) for certain benzenoids (see the Cyvin-Gutman reference, p. 105, eq. (i)).

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.

Crossrefs

Cf. A134290 (ninth column of Narayana triangle).

Programs

  • GAP
    List([0..30], n-> Binomial(n+10,10)*Binomial(n+9,8)/9); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+10,10)*Binomial(n+9,8)/9: n in [0..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9))^2*(n+10))/ 1316818944000:
    seq(a(n), n=0..19); # Peter Luschny, Sep 01 2016
  • Mathematica
    Table[Binomial[n + 10, 10]*Binomial[n + 10, 9]/(n + 10), {n, 0, 30}] (* Wesley Ivan Hurt, Apr 25 2017 *)
  • PARI
    vector(30, n, binomial(n+9,10)*binomial(n+8,8)/9) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+10,10)*binomial(n+9,8)/9 for n in (0..30)] # G. C. Greubel, Aug 28 2019
    

Formula

a(n) = A001263(n+10,10) = binomial(n+10,10)*binomial(n+10,9)/(n+10).
O.g.f.: P(9,x)/(1-x)^19 with the numerator polynomial P(9,x) = Sum_{k=1..9} A001263(9,k)*x^(k-1), the ninth row polynomial of the Narayana triangle: P(9,x) = 1 + 36*x + 336*x^2 + 1176*x^3 + 1764*x^4 + 1176*x^5 + 336*x^6 + 36*x^7 + x^8.
a(n) = Product_{i=1..9} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 2987553139/196 - 1544400*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 1179648*log(2)/7 - 114472793/980. (End)