cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A134338 a(n) = product of the "isolated divisors" of n. A divisor k of n is isolated if neither k-1 nor k+1 divides n.

Original entry on oeis.org

1, 1, 3, 4, 5, 6, 7, 32, 27, 50, 11, 72, 13, 98, 225, 512, 17, 972, 19, 200, 441, 242, 23, 13824, 125, 338, 729, 10976, 29, 4500, 31, 16384, 1089, 578, 1225, 419904, 37, 722, 1521, 64000, 41, 12348, 43, 42592, 91125, 1058, 47, 10616832, 343, 62500, 2601
Offset: 1

Views

Author

Leroy Quet, Oct 21 2007

Keywords

Comments

2 has no isolated divisors. So a(2) is 1.

Examples

			The divisors of 20 are 1, 2, 4, 5, 10, 20. Of these, 10 and 20 are the isolated divisors. So a(20) = 10*20 = 200.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) local div,ISO,i: div:=divisors(n): ISO:={}: for i to tau(n) do if member(div[i]-1,div)=false and member(div[i]+1,div)=false then ISO:=`union`(ISO,{div[i]}) end if end do: product(ISO[j],j=1..nops(ISO)) end proc: seq(a(n),n=1..50); # Emeric Deutsch, Oct 24 2007
  • Mathematica
    isoDivs[n_] := Module[{dn = Divisors[n]}, Complement[dn, Union[Flatten[Select[Partition[dn, 2, 1], #[[2]] - #[[1]] == 1 &]]]]]; Table[Times@@isoDivs[i], {i, 60}] (* Harvey P. Dale, Jan 09 2011 *)

Formula

a(2n-1) = A007955(2n-1); a(2n) = A007955(2n) / A134339(n). - Ray Chandler

Extensions

More terms from Emeric Deutsch, Oct 24 2007
Extended by Ray Chandler, Jun 24 2008
Showing 1-1 of 1 results.