A134353 Row sums of triangle A134352.
1, 2, 8, 16, 48, 96, 256, 512, 1280, 2560, 6144, 12288, 28672, 57344, 131072, 262144, 589824, 1179648, 2621440, 5242880, 11534336, 23068672, 50331648, 100663296, 218103808, 436207616, 939524096, 1879048192, 4026531840, 8053063680, 17179869184
Offset: 0
Examples
a(3) = 16 sum of row 3 terms of triangle A134352: (0 + 8 + 0 + 8). a(4) = 48 = 2^4 * A004526(6) = 16 * 3.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,4,-8).
Programs
-
Mathematica
Table[2^n*((2*n + 3)/4 + (-1)^n/4), {n, 0, 30}] (* Arkadiusz Wesolowski, Dec 28 2011 *) LinearRecurrence[{2,4,-8},{1,2,8},40] (* Harvey P. Dale, Nov 09 2017 *)
Formula
a(n) = 2^n * A004526(n+2).
From Arkadiusz Wesolowski, Dec 28 2011: (Start)
a(n) = 2^(n-2)*(2*n + 3 + (-1)^n).
G.f.: 1/((1 - 2*x)*(1 - 4*x^2)). (End)
G.f.: G(0)/(1-x), where G(k)= 1 + 2*x*(k+1)/(k+2 - 2*x*(k+2)*(k+3)/(2*x*(k+3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013