A134366 a(n) = (n!)^(n-1).
1, 1, 2, 36, 13824, 207360000, 193491763200000, 16390160963076096000000, 173238200573946282828103680000000, 300679807141675805997423113304381849600000000
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:=n->mul(n!/k, k=1..n): seq(a(n), n=0..9); # Zerinvary Lajos, Jan 22 2008 restart:with (combinat):a:=n->mul(stirling1(n,1), j=3..n): seq(a(n), n=1..10); # Zerinvary Lajos, Jan 01 2009
-
Mathematica
Table[(n!)^(n - 1), {n, 0, 10}]
-
PARI
a(n) = (n!)^(n-1); \\ Michel Marcus, Dec 23 2015
Formula
a(n) ~ exp(1/12 + n - n^2) * n^((n-1)*(2*n+1)/2) * (2*Pi)^((n-1)/2). - Vaclav Kotesovec, Oct 26 2017
Extensions
Offset corrected to 0 by Michel Marcus, Dec 23 2015