cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134410 Second-order Lucas numbers; a(n) = (2n+3)*Lucas(n) - n*Lucas(n-1).

Original entry on oeis.org

6, 3, 19, 27, 61, 108, 204, 367, 661, 1173, 2069, 3622, 6306, 10923, 18839, 32367, 55421, 94608, 161064, 273527, 463481, 783753, 1322869, 2229002, 3749886, 6299283, 10567579, 17705667, 29630461, 49532148, 82715844, 137997247, 230015581, 383064573, 637434389
Offset: 0

Views

Author

Peter Bala, Oct 24 2007

Keywords

Comments

This sequence is defined by analogy with the sequence of second-order Fibonacci numbers A010049.
Inverse binomial transform is (-1)^n * a(n). - Michael Somos, Jun 02 2014

Examples

			G.f. = 6 + 3*x + 19*x^2 + 27*x^3 + 61*x^4 + 108*x^5 + 204*x^6 + 367*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 3 (n + 1) LucasL[n] - n LucasL[n + 1]; (* Michael Somos, Jun 02 2014 *)
    LinearRecurrence[{2,1,-2,-1},{6,3,19,27},40] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    {a(n) = (6 + 5*n) * fibonacci(n+1) - (3 + 5*n) * fibonacci(n)}; /* Michael Somos, Jun 02 2014 */
    
  • PARI
    Vec((2-x)*(3-3*x+2*x^2)/(1-x-x^2)^2 + O(x^40)) \\ Colin Barker, Jun 02 2016

Formula

Defining equation: a(n) = (2n+3)*Lucas(n) - n*Lucas(n-1).
Recurrence: a(0) = 6, a(1) = 3, a(n+2) = a(n+1) + a(n) + 5*Lucas(n).
O.g.f.: (2-x)*(3-3x+2x^2)/(1-x-x^2)^2.
Set A(n) = (a(n-1) + a(n+1))/5, B(n) = a(n+1) - a(n-1). Then A(n+2) = A(n+1) + A(n) + 5*Fibonacci(n) and B(n+2) = B(n+1) + B(n) + 5*Lucas(n). The polynomials L_2(n,-x) = sum {k = 0..n} C(n,k)*a(n-k)*(-x)^k appear to satisfy a Riemann hypothesis; their zeros appear to lie on the vertical line Re x = 1/2 in the complex plane. Compare with the polynomials L(n,-x) defined in A132148.
0 = a(n)*(-a(n) - 4*a(n+1) + a(n+2)) + a(n+1)*(-3*a(n+1) + 6*a(n+2) - a(n+3)) + a(n+2)*(+3*a(n+2) - 4*a(n+3)) + a(n+3)*(+a(n+3)) for all n in Z. - Michael Somos, Jun 02 2014
a(n) = 2^(-1-n)*(6*((1-sqrt(5))^n+(1+sqrt(5))^n)+(-(-5+sqrt(5))*(1+sqrt(5))^n+(1-sqrt(5))^n*(5+sqrt(5)))*n). - Colin Barker, Jun 02 2016