cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134470 Continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 8, 1, 5, 1, 1, 1, 12, 5, 1, 1, 5, 1, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 11, 1, 6, 1, 3, 2, 1, 1, 1, 1, 1, 2, 6, 7, 1, 4, 2, 1, 1, 1, 13, 1, 1, 1, 2, 4, 2, 11, 1, 2, 5, 1, 8, 1, 78, 10, 1, 64, 1, 29, 1, 3, 1, 1, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 2, 32, 1, 92, 1, 14, 1, 10, 12, 2, 3, 16, 2, 1, 1, 1, 1, 8, 3, 15, 1, 2, 2, 1, 4, 4, 2, 8, 1, 1557, 3, 1, 69, 1, 5, 3, 11, 1, 1
Offset: 0

Views

Author

Hans J. H. Tuenter, Oct 27 2007

Keywords

Crossrefs

Cf. A134469 (Decimal expansion), A134471 (Numerators of continued fraction convergents), A134472 (Denominators of continued fraction convergents).

Programs

  • Maple
    Digits:=100; cfrac(-Zeta(1/2)/sqrt(2*Pi),30,'quotients');
  • Mathematica
    ContinuedFraction[ -Zeta[1/2]/Sqrt[2 \[Pi]], 100] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
  • PARI
    default(realprecision,1000);
    c=-zeta(1/2)/sqrt(2*Pi); /* == 0.582597157... (A134469) */
    contfrac(c) /* gives 967 terms */

Extensions

More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010