cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134519 Numbers remaining when the natural numbers (A000027) are arranged into a triangle and only the beginning and end terms of each row are retained.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 10, 11, 15, 16, 21, 22, 28, 29, 36, 37, 45, 46, 55, 56, 66, 67, 78, 79, 91, 92, 105, 106, 120, 121, 136, 137, 153, 154, 171, 172, 190, 191, 210, 211, 231, 232, 253, 254, 276, 277, 300, 301, 325, 326, 351, 352, 378, 379, 406, 407, 435, 436, 465, 466
Offset: 1

Views

Author

Rick L. Shepherd, Oct 29 2007

Keywords

Comments

Equivalently, this is TriRet(A000027,{1}) = TriRem(A000027,{2,3,4,...}), using the operations defined in A134509. Bisections are A000217-{0} and A000124-{1}. A055802 and A114220 appear to be this sequence with two and three additional leading terms, respectively.

Crossrefs

Cf. A084263: A000217(m) + (1 + (-1)^m)/2.
Cf. A117142: A000217(floor(m/2)+1) - (1 + (-1)^m)/2.

Programs

  • GAP
    a:=[];; for n in [1..60] do if n mod 2=0 then Add(a,(16+4*n+2*n^2)/16); else Add(a,(3+4*n+n^2)/8); fi; od; a; # Muniru A Asiru, Dec 21 2018
    
  • Magma
    T:=func; [T(Floor((n+1)/2))+(1+(-1)^n)/2: n in [1..60]]; // Bruno Berselli, Aug 20 2019
  • Maple
    seq(coeff(series(-x*(x^4-x^3-x^2+x+1)/((x-1)^3*(x+1)^2),x,n+1), x, n), n = 1 .. 60); # Muniru A Asiru, Dec 21 2018
  • Mathematica
    Table[Sum[If[EvenQ[k], 1, (k - 1)/2], {k, 0, n}], {n, 60}] (* Jon Maiga, Dec 21 2018 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,2,3,4,6},60] (* Harvey P. Dale, Oct 13 2024 *)

Formula

From Colin Barker, Jul 17 2013: (Start)
a(n) = (16 + 4*n + 2*n^2)/16 for n even, a(n) = (3 + 4*n + n^2)/8 for n odd.
G.f.: -x*(x^4 - x^3 - x^2 + x + 1) / ((x - 1)^3*(x + 1)^2). (End)
a(n) = Sum_{k=0..n-1} A057979(k). - Jon Maiga, Dec 21 2018
a(n) = A000217(floor(n+1)/2) + (1 + (-1)^n)/2. - Bruno Berselli, Aug 20 2019