A134519 Numbers remaining when the natural numbers (A000027) are arranged into a triangle and only the beginning and end terms of each row are retained.
1, 2, 3, 4, 6, 7, 10, 11, 15, 16, 21, 22, 28, 29, 36, 37, 45, 46, 55, 56, 66, 67, 78, 79, 91, 92, 105, 106, 120, 121, 136, 137, 153, 154, 171, 172, 190, 191, 210, 211, 231, 232, 253, 254, 276, 277, 300, 301, 325, 326, 351, 352, 378, 379, 406, 407, 435, 436, 465, 466
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..10000
- Bruno Berselli, An interpretation of initial terms.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
GAP
a:=[];; for n in [1..60] do if n mod 2=0 then Add(a,(16+4*n+2*n^2)/16); else Add(a,(3+4*n+n^2)/8); fi; od; a; # Muniru A Asiru, Dec 21 2018
-
Magma
T:=func; [T(Floor((n+1)/2))+(1+(-1)^n)/2: n in [1..60]]; // Bruno Berselli, Aug 20 2019
-
Maple
seq(coeff(series(-x*(x^4-x^3-x^2+x+1)/((x-1)^3*(x+1)^2),x,n+1), x, n), n = 1 .. 60); # Muniru A Asiru, Dec 21 2018
-
Mathematica
Table[Sum[If[EvenQ[k], 1, (k - 1)/2], {k, 0, n}], {n, 60}] (* Jon Maiga, Dec 21 2018 *) LinearRecurrence[{1,2,-2,-1,1},{1,2,3,4,6},60] (* Harvey P. Dale, Oct 13 2024 *)
Formula
From Colin Barker, Jul 17 2013: (Start)
a(n) = (16 + 4*n + 2*n^2)/16 for n even, a(n) = (3 + 4*n + n^2)/8 for n odd.
G.f.: -x*(x^4 - x^3 - x^2 + x + 1) / ((x - 1)^3*(x + 1)^2). (End)
a(n) = A000217(floor(n+1)/2) + (1 + (-1)^n)/2. - Bruno Berselli, Aug 20 2019
Comments