cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134538 a(n) = 5*n^2 - 1.

Original entry on oeis.org

4, 19, 44, 79, 124, 179, 244, 319, 404, 499, 604, 719, 844, 979, 1124, 1279, 1444, 1619, 1804, 1999, 2204, 2419, 2644, 2879, 3124, 3379, 3644, 3919, 4204, 4499, 4804, 5119, 5444, 5779, 6124, 6479, 6844, 7219, 7604, 7999, 8404, 8819, 9244, 9679, 10124, 10579, 11044
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2007

Keywords

Comments

For k != 0, the quintic polynomials of the form x^5 + 5*(5*k^2 - 1)*x + 4*(5*k^2 - 1) have Galois group A5 (order 60) over rational numbers.

Programs

Formula

G.f.: x*(-4-7*x+x^2)/(-1+x)^3. - R. J. Mathar, Nov 14 2007
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(5))*cot(Pi/sqrt(5)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(5))*csc(Pi/sqrt(5)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(5))*csc(Pi/sqrt(5)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(5))*sin(sqrt(2/5)*Pi)/sqrt(2). (End)
From Elmo R. Oliveira, Jun 04 2025: (Start)
E.g.f.: 1 + (-1 + 5*x + 5*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)