cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134630 a(n) = 5*n^5 - 3*n^3 - 2*n^2.

Original entry on oeis.org

0, 0, 128, 1116, 4896, 15200, 38160, 82908, 162176, 292896, 496800, 801020, 1238688, 1849536, 2680496, 3786300, 5230080, 7083968, 9429696, 12359196, 15975200, 20391840, 25735248, 32144156, 39770496, 48780000, 59352800, 71684028, 85984416, 102480896, 121417200, 143054460, 167671808, 195566976, 227056896
Offset: 0

Views

Author

Omar E. Pol, Nov 04 2007

Keywords

Comments

Coefficients and exponents are the first three prime numbers in decreasing order.

Examples

			a(4)=4896 because 4^5=1024, 5*1024=5120, 4^3=64, 3*64=192, 4^2=16, 2*16=32 and we can write 5120-192-32=4896.
		

Crossrefs

Programs

  • Magma
    [5*n^5-3*n^3 -2*n^2: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
  • Maple
    A134630:=n->5*n^5 - 3*n^3 - 2*n^2; seq(A134630(n), n=0..50); # Wesley Ivan Hurt, May 21 2014
  • Mathematica
    CoefficientList[Series[4 x^2 (32 + 87 x + 30 x^2 + x^3)/(-1 + x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 21 2014 *)
    Table[5n^5-3n^3-2n^2,{n,0,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,0,128,1116,4896,15200},40] (* Harvey P. Dale, Jun 01 2014 *)

Formula

a(n) = 5*n^5 - 3*n^3 - 2*n^2.
G.f.: 4*x^2*(32+87*x+30*x^2+x^3)/(-1+x)^6. - R. J. Mathar, Nov 14 2007
a(0)=0, a(1)=0, a(2)=128, a(3)=1116, a(4)=4896, a(5)=15200, a(n)= 6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Jun 01 2014

Extensions

More terms from Vincenzo Librandi, Dec 14 2010