cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134633 5*n^5 + 3*n^3 + 2*n^2. Coefficients and exponents are the prime numbers in decreasing order.

Original entry on oeis.org

0, 10, 192, 1314, 5344, 16050, 39600, 85162, 165504, 297594, 503200, 809490, 1249632, 1863394, 2697744, 3807450, 5255680, 7114602, 9465984, 12401794, 16024800, 20449170, 25801072, 32219274, 39855744, 48876250, 59460960, 71805042, 86119264, 102630594, 121582800, 143237050, 167872512, 195786954, 227297344
Offset: 0

Views

Author

Omar E. Pol, Nov 04 2007

Keywords

Examples

			a(4)=5344 because 4^5=1024, 5*1024=5120, 4^3=64, 3*64=192, 4^2=16, 2*16=32 and we can write 5120+192+32=5344.
		

Crossrefs

Programs

  • Magma
    [5*n^5+3*n^3+2*n^2: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
  • Maple
    A134633:=n->5*n^5 + 3*n^3 + 2*n^2; seq(A134633(n), n=0..50); # Wesley Ivan Hurt, May 21 2014
  • Mathematica
    Table[5n^5+3n^3+2n^2,{n,0,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,10,192,1314,5344,16050},40] (* Harvey P. Dale, Apr 25 2012 *)
    CoefficientList[Series[2 x (5 + 66 x + 156 x^2 + 70 x^3 + 3x^4)/(1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, May 21 2014 *)

Formula

a(n) = 5*n^5 + 3*n^3 + 2*n^2.
G.f.: 2x*(5+66x+156x^2+70x^3+3x^4)/(1-x)^6. - R. J. Mathar, Nov 14 2007
a(0)=0, a(1)=10, a(2)=192, a(3)=1314, a(4)=5344, a(5)=16050, a(n)= 6*a(n-1)- 15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Apr 25 2012

Extensions

More terms from Vincenzo Librandi, Dec 14 2010