cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134738 Cubes which are not the sum of three squares.

Original entry on oeis.org

343, 3375, 12167, 21952, 29791, 59319, 103823, 166375, 216000, 250047, 357911, 493039, 658503, 778688, 857375, 1092727, 1367631, 1404928, 1685159, 1906624, 2048383, 2460375, 2924207, 3442951, 3796416, 4019679, 4657463, 5359375
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2007

Keywords

Comments

This sequence was inspired by e-mail from Ray Chandler, Nov 07 2007

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all terms <= N
    sort([seq(seq(4^(3*i) * (8*j + 7)^3, j = 0 .. floor((N^(1/3)/4^i - 7)/8)), i = 0 .. floor(log[4](N^(1/3))))]); # Robert Israel, Dec 26 2017
  • Mathematica
    b = Table[x^3, {x, 1, 300}]; a = {}; Do[Do[Do[AppendTo[a, (x^2 + y^2 + z^2)^3], {x, 0, 30}], {y, 0, 30}], {z, 0, 30}]; Union[a]; Complement[b, a] (*Artur Jasinski*)
    Select[Range[200]^3,SquaresR[3,#]==0&] (* Harvey P. Dale, Feb 03 2015 *)
  • Python
    def A134738(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x>>(i<<1))-7>>3)+1 for i in range(x.bit_length()>>1))
        return bisection(f,n,n)**3 # Chai Wah Wu, Feb 14 2025

Formula

a(n) = A004215(n)^3. - Ray Chandler, Jan 29 2009

Extensions

Extended by Ray Chandler, Jan 29 2009