cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134770 a(n) = 4*A000984(n) - 3.

Original entry on oeis.org

1, 5, 21, 77, 277, 1005, 3693, 13725, 51477, 194477, 739021, 2821725, 10816621, 41602397, 160466397, 620470077, 2404321557, 9334424877, 36300541197, 141381055197, 551386115277, 2153031497757, 8416395854877, 32933722910397, 128990414732397, 505642425751005, 1983674131792413
Offset: 0

Views

Author

Gary W. Adamson, Nov 10 2007

Keywords

Comments

The second inverse binomial transform of this sequence is A134771, the sequence interleaved with threes: (1, 3, 5, 3, 21, 3, 77, 3, ...).

Examples

			a(2) = 21 = 4*A000984(2) - 3 = 4*6 - 3.
		

Crossrefs

Programs

  • Magma
    [4*(n+1)*Catalan(n)-3: n in [0..40]]; // G. C. Greubel, Oct 13 2023
    
  • Mathematica
    Table[4 Binomial[2n,n]-3,{n,0,30}] (* Harvey P. Dale, Dec 01 2022 *)
  • PARI
    a(n)=4*binomial(2*n, n) - 3; \\ Michel Marcus, Jul 02 2020
    
  • SageMath
    [4*binomial(2*n,n)-3 for n in range(41)] # G. C. Greubel, Oct 13 2023

Formula

From G. C. Greubel, Oct 13 2023: (Start)
a(n) = 4*(n+1)*A000108(n) - 3.
G.f.: 4/sqrt(1-4*x) - 3/(1-x).
Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = 4*BesselI(0, 2*x) - cosh(x). (End)

Extensions

a(10) corrected and offsets aligned by Georg Fischer, Jul 01 2020
More terms from Michel Marcus, Jul 02 2020