A134770 a(n) = 4*A000984(n) - 3.
1, 5, 21, 77, 277, 1005, 3693, 13725, 51477, 194477, 739021, 2821725, 10816621, 41602397, 160466397, 620470077, 2404321557, 9334424877, 36300541197, 141381055197, 551386115277, 2153031497757, 8416395854877, 32933722910397, 128990414732397, 505642425751005, 1983674131792413
Offset: 0
Keywords
Examples
a(2) = 21 = 4*A000984(2) - 3 = 4*6 - 3.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[4*(n+1)*Catalan(n)-3: n in [0..40]]; // G. C. Greubel, Oct 13 2023
-
Mathematica
Table[4 Binomial[2n,n]-3,{n,0,30}] (* Harvey P. Dale, Dec 01 2022 *)
-
PARI
a(n)=4*binomial(2*n, n) - 3; \\ Michel Marcus, Jul 02 2020
-
SageMath
[4*binomial(2*n,n)-3 for n in range(41)] # G. C. Greubel, Oct 13 2023
Formula
From G. C. Greubel, Oct 13 2023: (Start)
a(n) = 4*(n+1)*A000108(n) - 3.
G.f.: 4/sqrt(1-4*x) - 3/(1-x).
Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = 4*BesselI(0, 2*x) - cosh(x). (End)
Extensions
a(10) corrected and offsets aligned by Georg Fischer, Jul 01 2020
More terms from Michel Marcus, Jul 02 2020
Comments