cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134805 Denominator of Sum_{i=1..n} 1/(i^2*binomial(2*i,i)).

Original entry on oeis.org

1, 2, 24, 360, 2016, 16800, 237600, 151351200, 605404800, 30875644800, 53330659200, 6453009763200, 11416863427200, 1929449919196800, 1929449919196800, 93256746094512000, 680225677395264000, 196585220767231296000, 93119315100267456000, 1243794691794272409792000
Offset: 0

Views

Author

Wolfdieter Lang and N. J. A. Sloane, Oct 13 2008

Keywords

Comments

For this sum times 2/3 see A130549/A130550 with offset 1.

Examples

			0, 1/2, 13/24, 197/360, 1105/2016, 9211/16800, 130277/237600, 82987349/151351200, ...
		

Crossrefs

For numerators see A130549, n>=1.

Programs

  • Maple
    seq(denom(add(1/(k^2*binomial(2*k, k)), k = 1 .. n)), n = 0 .. 19); # Peter Bala, Mar 03 2015
  • Mathematica
    Join[{1},Denominator[Accumulate[Table[1/(n^2 Binomial[2n,n]),{n,20}]]]] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    a(n) = denominator(sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016

Formula

Sum_{i >= 1} 1/(i^2*binomial(2*i, i)) = Pi^2/18.