A134869 Row sums of triangle A134868.
1, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379, 1432
Offset: 1
Examples
a(4) = 11 = sum of row 4 terms of triangle A134868: (2, + 2 + 3 + 4). a(4) = 11 = 1 + 10, where 10 = T(4). a(4) = 11 = (1, 3, 3, 1) dot (1, 3, 0, 1) = (1 + 9 + 0 + 1).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
a:=n->sum((stirling2(j+1,n)), j=1..n):seq(a(n), n=1..50); # Zerinvary Lajos, Apr 12 2008
-
Mathematica
Table[(n^2 + n)/2 + Boole[n != 1], {n, 53}] (* or *) Table[PolygonalNumber@ n + Boole[n != 1], {n, 53}] (* Version 10.4, or *) Table[Sum[StirlingS2[k + 1, n], {k, n}], {n, 53}] (* or *) Rest@ CoefficientList[Series[x (1 + x - 2 x^2 + x^3)/(1 - x)^3, {x, 0, 53}], x] (* Michael De Vlieger, Jul 19 2016 *)
-
PARI
a(n)=if(n>1, n*(n+1)/2+1, 1) \\ Charles R Greathouse IV, Aug 05 2016
Formula
a(n) = 1, then for n>1, a(n) = T(n) + 1, where A000217 = (1, 3, 6, 10, 15, ...).
Binomial transform of [1, 3, 0, 1, -1, 1, -1, 1, ...].
From R. J. Mathar, Oct 27 2008: (Start)
G.f.: x(1+x-2x^2+x^3)/(1-x)^3.
Sum_{n>=1} 1/a(n) = 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) - 1/2. - Amiram Eldar, Jun 02 2025
Comments