A182703
Triangle read by rows: T(n,k) = number of occurrences of k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 5, 1, 1, 0, 1, 7, 4, 2, 1, 0, 1, 11, 3, 2, 1, 1, 0, 1, 15, 8, 3, 3, 1, 1, 0, 1, 22, 7, 6, 2, 2, 1, 1, 0, 1, 30, 15, 6, 5, 3, 2, 1, 1, 0, 1, 42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1, 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1
Offset: 1
Illustration of three arrangements of the last section of the set of partitions of 7, or more generally the 7th section of the set of partitions of any integer >= 7:
. _ _ _ _ _ _ _
. (7) (7) |_ _ _ _ |
. (4+3) (4+3) |_ _ _ _|_ |
. (5+2) (5+2) |_ _ _ | |
. (3+2+2) (3+2+2) |_ _ _|_ _|_ |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) |_|
. ----------------
. 19,8,5,3,2,1,1 --> Row 7 of triangle A207031.
. |/|/|/|/|/|/|
. 11,3,2,1,1,0,1 --> Row 7 of this triangle.
.
Note that the "head" of the last section is formed by the partitions of 7 that do not contain 1 as a part. The "tail" is formed by A000041(7-1) parts of size 1. The number of rows (or zones) is A000041(7) = 15. The last section of the set of partitions of 7 contains eleven 1's, three 2's, two 3's, one 4, one 5, there are no 6's and it contains one 7. So, for k = 1..7, row 7 gives: 11, 3, 2, 1, 1, 0, 1.
Triangle begins:
1;
1, 1;
2, 0, 1;
3, 2, 0, 1;
5, 1, 1, 0, 1;
7, 4, 2, 1, 0, 1;
11, 3, 2, 1, 1, 0, 1;
15, 8, 3, 3, 1, 1, 0, 1;
22, 7, 6, 2, 2, 1, 1, 0, 1;
30, 15, 6, 5, 3, 2, 1, 1, 0, 1;
42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1;
56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1;
...
-
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n,i) option remember; local g;
if n=0 then [1]
elif n<2 or i<2 then [0]
else g:= `if`(i>n, [0], b(n-i, i));
p(p([0$j=2..i, g[1]], b(n, i-1)), g)
fi
end:
h:= proc(n) option remember;
`if`(n=0, 1, b(n, n)[1]+h(n-1))
end:
T:= proc(n) h(n-1), b(n, n)[2..n][] end:
seq(T(n), n=1..20); # Alois P. Heinz, Feb 19 2012
-
p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{g}, Which[n == 0, {1}, n<2 || i<2, {0}, True, g = If [i>n, {0}, b[n-i, i]]; p[p[Append[Array[0&, i-1], g[[1]]], b[n, i-1]], g]]]; h[n_] := h[n] = If[n == 0, 1, b[n, n][[1]] + h[n-1]]; t[n_] := {h[n-1], Sequence @@ b[n, n][[2 ;; n]]}; Table[t[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 16 2014, after Alois P. Heinz's Maple code *)
Table[{PartitionsP[n-1]}~Join~Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], k], {k,2,n}], {n,1,12}] // Flatten (* Robert Price, May 15 2020 *)
A026725
Triangular array, T, read by rows: T(n,0) = T(n,n) = 1. For n >= 2 and 1<=k<=n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is odd and k=n/2, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 7, 4, 1, 1, 6, 16, 11, 5, 1, 1, 7, 22, 27, 16, 6, 1, 1, 8, 29, 65, 43, 22, 7, 1, 1, 9, 37, 94, 108, 65, 29, 8, 1, 1, 10, 46, 131, 267, 173, 94, 37, 9, 1, 1, 11, 56, 177, 398, 440, 267, 131, 46, 10, 1, 1, 12, 67, 233
Offset: 0
Triangle begins:
1
1 1
1 2 1
1 4 3 1
1 5 7 4 1
1 6 16 11 5 1
1 7 22 27 16 6 1
1 8 29 65 43 22 7 1
1 9 37 94 108 65 29 8 1
1 10 46 131 267 173 94 37 9 1
1 11 56 177 398 440 267 131 46 10 1
1 12 67 233 575 1105 707 398 177 56 11 1
... - _Philippe Deléham_, Feb 01 2014
-
T:= function(n,k)
if k=0 or k=n then return 1;
elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
else return T(n-1, k-1) + T(n-1, k);
fi;
end;
Flat(List([0..14], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 16 2019
-
A026725 := proc(n,k)
option remember;
if n < 0 or k < 0 then
0;
elif k=0 or k=n then
1;
elif 2*k = n-1 then
procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if;
end proc: # R. J. Mathar, Oct 21 2019
-
T[n_, k_]:= T[n, k]= If[k==0||k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]];
Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 16 2019 *)
-
T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
for(n=0,11, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 16 2019
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jul 16 2019
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
Original entry on oeis.org
1, 2, 2, 2, 2, 3, 2, 2, 3, 4, 2, 2, 3, 4, 5, 2, 2, 3, 4, 5, 6, 2, 2, 3, 4, 5, 6, 7, 2, 2, 3, 4, 5, 6, 7, 8, 2, 2, 3, 4, 5, 6, 7, 8, 9, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
Offset: 1
First few rows of the triangle:
1;
2, 2;
2, 2, 3;
2, 2, 3, 4;
2, 2, 3, 4, 5;
...
-
Table[k + Boole[k == 1 && n != 2], {n, 2, 14}, {k, n - 1}] // Flatten (* Michael De Vlieger, Jul 19 2016 *)
Showing 1-4 of 4 results.
Comments