A134948 Self-factorial numbers: numbers n with property that for each single digit d of n, we can also see the decimal expansion of d! as a substring of n.
1, 2, 10, 11, 12, 21, 22, 24, 100, 101, 102, 110, 111, 112, 120, 121, 122, 124, 201, 210, 211, 212, 221, 222, 224, 241, 242, 244, 424, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1024, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1124, 1200
Offset: 1
Examples
24 is a self-factorial number because we can see both 2! = 2 and 4! = 24 in the decimal expansion 24.
Links
- D. Applegate and R. Zumkeller, Table of n, a(n) for n = 1..10000 (first 300 terms from David Applegate)
Programs
-
Haskell
import Data.List (nub, sort, isInfixOf) a134948 n = a134948_list !! (n-1) a134948_list = filter h [0..] where h x = all (`isInfixOf` xs) (map (fss !!) $ map (read . return) $ sort $ nub xs) where xs = show x fss = map show $ take 10 a000142_list -- Reinhard Zumkeller, Sep 26 2014
-
Maple
isA134948 := proc(n) local nbase10,dgs,d,dfac ; nbase10 := convert(n,base,10) ; dgs := convert(nbase10,set) ; for d in dgs do dfac := convert(d!,base,10) ; if verify(dfac,nbase10,'sublist') = false then RETURN(false) ; fi ; od: RETURN(true) ; end: for n from 1 to 10000 do if isA134948(n) then printf("%d ",n) ; fi ; od: # R. J. Mathar, Feb 05 2008
Extensions
a(1) - a(18) computed by N. J. A. Sloane, Feb 02 2008
a(19) onwards from David Applegate, Feb 09 2008
More terms from R. J. Mathar, Feb 05 2008
Comments