cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134965 a(1)=3, a(n) = a(n-1) + 7 + 2*mod(n-1, 2) for n>=2.

Original entry on oeis.org

3, 12, 19, 28, 35, 44, 51, 60, 67, 76, 83, 92, 99, 108, 115, 124, 131, 140, 147, 156, 163, 172, 179, 188, 195, 204, 211, 220, 227, 236, 243, 252, 259, 268, 275, 284, 291, 300, 307, 316, 323, 332, 339, 348, 355, 364, 371, 380, 387, 396, 403, 412, 419, 428
Offset: 1

Views

Author

Roger L. Bagula, Jan 31 2008

Keywords

Comments

Starting weights for pyramid game.
Numbers n such that the equation m(m + 1)/2 + 1 - n == 0 mod m has a solution.
Numbers congruent to {3, 12} mod 16. - Philippe Deléham, Nov 28 2016

Programs

  • Mathematica
    Flatten[Table[If[ IntegerQ[2*Sqrt[ -7 + 8*n]] && Mod[n - 7, 8] == 0, f[n], {}], {n, 1, 10000}]]
    LinearRecurrence[{1,1,-1},{3,12,19},60] (* Harvey P. Dale, Oct 05 2017 *)
  • PARI
    Vec(x*(3 + 9*x + 4*x^2) / ((1 - x)^2 * (1 + x)) + O(x^100)) \\ Colin Barker, Nov 29 2016
    
  • PARI
    a(n)=8*n - 4 - n%2 \\ Charles R Greathouse IV, Nov 29 2016

Formula

From R. J. Mathar, Feb 05 2008: (Start)
G.f.: (3+9*x+4*x^2)/((1-x)^2*(x+1)).
a(n) - a(n-1) = A010729(n).
(End)
From Colin Barker, Nov 29 2016: (Start)
a(n) = 8*n - 4 for n even.
a(n) = 8*n - 5 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
(End)
E.g.f.: 4 + ((16*x - 9)*exp(x) + exp(-x))/2. - David Lovler, Aug 21 2022

Extensions

Definition adapted to offset by Georg Fischer, Jun 19 2021