A134965 a(1)=3, a(n) = a(n-1) + 7 + 2*mod(n-1, 2) for n>=2.
3, 12, 19, 28, 35, 44, 51, 60, 67, 76, 83, 92, 99, 108, 115, 124, 131, 140, 147, 156, 163, 172, 179, 188, 195, 204, 211, 220, 227, 236, 243, 252, 259, 268, 275, 284, 291, 300, 307, 316, 323, 332, 339, 348, 355, 364, 371, 380, 387, 396, 403, 412, 419, 428
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
Flatten[Table[If[ IntegerQ[2*Sqrt[ -7 + 8*n]] && Mod[n - 7, 8] == 0, f[n], {}], {n, 1, 10000}]] LinearRecurrence[{1,1,-1},{3,12,19},60] (* Harvey P. Dale, Oct 05 2017 *)
-
PARI
Vec(x*(3 + 9*x + 4*x^2) / ((1 - x)^2 * (1 + x)) + O(x^100)) \\ Colin Barker, Nov 29 2016
-
PARI
a(n)=8*n - 4 - n%2 \\ Charles R Greathouse IV, Nov 29 2016
Formula
From R. J. Mathar, Feb 05 2008: (Start)
G.f.: (3+9*x+4*x^2)/((1-x)^2*(x+1)).
a(n) - a(n-1) = A010729(n).
(End)
From Colin Barker, Nov 29 2016: (Start)
a(n) = 8*n - 4 for n even.
a(n) = 8*n - 5 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
(End)
E.g.f.: 4 + ((16*x - 9)*exp(x) + exp(-x))/2. - David Lovler, Aug 21 2022
Extensions
Definition adapted to offset by Georg Fischer, Jun 19 2021
Comments