A134996 Dihedral calculator primes: p, p upside down, p in a mirror, p upside-down-and-in-a-mirror are all primes.
2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121, 121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081, 188011, 188801, 1008001, 1022201, 1028011, 1055501, 1058011, 1082801, 1085801, 1088081, 1108201, 1108501, 1110881, 1120121, 1120211
Offset: 1
Examples
120121 is such a number because 120121, 121021 (upside down), 151051 (mirror) and 150151 are all prime. (This is the smallest one in which all four numbers are distinct.)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..7174
- C. K. Caldwell, The Prime Glossary, Dihedral Prime
- Eric Weisstein's World of Mathematics, Dihedral Prime.
Programs
-
Mathematica
lst1={2,5}; startQ[n_]:=First[IntegerDigits[n]]==1; subQ[n_]:=Module[{lst={0,1,2,5,8}},SubsetQ[lst,Union[IntegerDigits[n]]]]; rev[n_]:=Reverse[IntegerDigits[n]]; updown[n_]:=FromDigits[rev[n]]; mirror[n_]:=FromDigits[rev[n]/.{2-> 5,5-> 2}]; updownmirror[n_]:=FromDigits[rev[mirror[n]]]; lst2=Select[Range@188801,And[startQ[#],subQ[#],PrimeQ[#],PrimeQ[updown[#]],PrimeQ[mirror[#]],PrimeQ[updownmirror[#]]]&]; Join[lst1,lst2] (* Ivan N. Ianakiev, Oct 08 2015 *)
-
Python
from sympy import isprime from itertools import count, islice, product def t(s): return s.translate({ord("2"):ord("5"), ord("5"):ord("2")}) def ok(s): # s is a string of digits return all(isprime(int(w)) for w in [s, s[::-1], t(s), t(s[::-1])]) def agen(): # generator of terms yield from (2, 5) for d in count(2): for mid in product("01258", repeat=d-2): s = "1" + "".join(mid) + "1" if ok(s): yield int(s) print(list(islice(agen(), 35))) # Michael S. Branicky, Apr 27 2024
Extensions
5 added by Patrick Capelle, Feb 06 2008
Comments