cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135052 Expansion of g.f.: (1-2*x-sqrt(1-4*x+8*x^3-4*x^4))/(2*x^2*(1-x)).

Original entry on oeis.org

1, 1, 3, 7, 19, 51, 143, 407, 1183, 3487, 10415, 31439, 95791, 294191, 909823, 2830943, 8856255, 27839167, 87888767, 278545663, 885903743, 2826612095, 9045147391, 29022168063, 93350430975, 300949170431, 972271227647
Offset: 0

Views

Author

Paul Barry, Nov 15 2007

Keywords

Comments

Sequence is the binomial transform of the aerated large Schroeder numbers A006318. Hankel transform is A060656(n+1).
Number of lattice paths, never going below the x-axis, from (0,0) to (n,0) consisting of up steps U = (1,1), down steps D = (1,-1) and horizontal steps H(k) = (k,0) for every positive integer k. For instance, for n=3, we have the 7 paths: H(1)H(1)H(1), H(1)H(2), H(2)H(1), H(3), H(1)UD, UDH(1), UH(1)D. - Emanuele Munarini, Mar 14 2011

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x - Sqrt[1 - 4 x + 8 x^3 - 4 x^4]) / (2 x^2 (1 - x)), {x, 0, 33}], x] (* Vincenzo Librandi, Apr 19 2015 *)

Formula

a(n) = Sum_{k=0..n, Sum_{j=0..k/2, C(k/2+j, 2j)*C(j)*(1+(-1)^k)/2}}, where C(n) is A000108(n).
G.f.: 1/(1-x-2x^2/(1-x-x^2/(1-x-2x^2/(1-x-x^2/(1-x-2x^2.... (continued fraction). - Paul Barry, Jan 02 2009
a(n) = Sum_{s=0..n} Sum_{m=0..n-2s} (C(s)*binomial(m+2s,m) * binomial(n-2s-1,m-1)), where C(n) is A000108(n). - José Luis Ramírez Ramírez, Apr 19 2015
Conjecture: (n+2)*a(n) +(-5*n-4)*a(n-1) +2*(2*n+1)*a(n-2) +4*(2*n-5)*a(n-3) +12*(-n+3)*a(n-4) +4*(n-4)*a(n-5)=0. - R. J. Mathar, Apr 19 2015
a(n) ~ (2+sqrt(2))^(n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Apr 20 2015