A135065 A127733 * A007318 as infinite lower triangular matrices.
1, 4, 4, 9, 18, 9, 16, 48, 48, 16, 25, 100, 150, 100, 25, 36, 180, 360, 360, 180, 36, 49, 294, 735, 980, 735, 294, 49, 64, 448, 1344, 2240, 2240, 1344, 448, 64, 81, 648, 2268, 4536, 5670, 4536, 2268, 648, 81, 100, 900, 3600, 8400, 12600, 12600, 8400, 3600
Offset: 0
Examples
First few rows of the triangle: 1; 4, 4; 9, 18, 9; 16, 48, 48, 16; 25, 100, 150, 100, 25; 36, 180, 360, 360, 180, 36; 49, 294, 735, 980, 735, 294, 49;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows
- Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
Programs
-
Maple
with(combstruct):for n from 0 to 11 do seq(n*m*count(Combination(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Apr 09 2008
-
Mathematica
Flatten[Table[Binomial[n,k](n+1)^2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 12 2013 *)
Formula
T(n-1,k-1) = Sum_{i=-k..k} (-1)^i*(k^2-i^2)*binomial(n,k+i)*binomial(n,k-i). - Mircea Merca, Apr 05 2012
G.f.: (-1 - x - x*y)/(x + x*y - 1)^3. - R. J. Mathar, Aug 12 2015
Extensions
Corrected by Zerinvary Lajos, Apr 09 2008
Comments