cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135065 A127733 * A007318 as infinite lower triangular matrices.

Original entry on oeis.org

1, 4, 4, 9, 18, 9, 16, 48, 48, 16, 25, 100, 150, 100, 25, 36, 180, 360, 360, 180, 36, 49, 294, 735, 980, 735, 294, 49, 64, 448, 1344, 2240, 2240, 1344, 448, 64, 81, 648, 2268, 4536, 5670, 4536, 2268, 648, 81, 100, 900, 3600, 8400, 12600, 12600, 8400, 3600
Offset: 0

Views

Author

Gary W. Adamson, Nov 16 2007

Keywords

Comments

A135065 * [1/1, 1/2, 1/3, ...] = A066524: (1, 6, 21, 60, 155, ...).
Triangle T(n,k), 0 <= k <= n, read by rows, given by (4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 27 2011

Examples

			First few rows of the triangle:
   1;
   4,   4;
   9,  18,   9;
  16,  48,  48,  16;
  25, 100, 150, 100,  25;
  36, 180, 360, 360, 180,  36;
  49, 294, 735, 980, 735, 294,  49;
		

Crossrefs

Cf. A000290, A127733, A066524, A014477 (row sums), A084938.

Programs

  • Maple
    with(combstruct):for n from 0 to 11 do seq(n*m*count(Combination(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Flatten[Table[Binomial[n,k](n+1)^2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 12 2013 *)

Formula

T(n,k) = binomial(n,k)*(n+1)^2 = A007318(n,k)*A000290(n+1). - Philippe Deléham, Oct 27 2011
T(n-1,k-1) = Sum_{i=-k..k} (-1)^i*(k^2-i^2)*binomial(n,k+i)*binomial(n,k-i). - Mircea Merca, Apr 05 2012
G.f.: (-1 - x - x*y)/(x + x*y - 1)^3. - R. J. Mathar, Aug 12 2015

Extensions

Corrected by Zerinvary Lajos, Apr 09 2008