A135148
A binomial recursion: a(n) = q(n) (see formula).
Original entry on oeis.org
0, 1, 6, 45, 400, 4115, 48146, 631729, 9189972, 146829039, 2556200086, 48167698733, 976792093784, 21211601837803, 491112582793626, 12077021182230057, 314362864408454236, 8635229233659916007, 249631741661080132766, 7575921686807827601701, 240827454421807200901728
Offset: 1
-
z[1] := x; z[n_] := 1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n - 1}]; Table[ Coefficient[z[n], x, 0], {n, 1, 20}] (* G. C. Greubel, Sep 28 2016 *)
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x, 0], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[CoefficientList[Series[(1 - E^x)*(E^x - 2*x - 1)/(2*(2 - E^x)^2), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 25 2020 *)
-
r=1; s=2; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
A135147
A binomial recursion : a(n) = p(n) (see formula).
Original entry on oeis.org
1, 4, 25, 188, 1671, 17190, 201125, 2638984, 38390179, 613363466, 10678267425, 201215691660, 4080450217247, 88609322165902, 2051573162708125, 50450534991347216, 1313219083705400475, 36072797094375866898, 1042811362801447763225, 31647646914322017237652, 1006032342980535954429463
Offset: 1
-
z[1]:= x; z[n_] := 1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n - 1}]; Table[ Coefficient[z[n], x], {n, 1, 20}] (* G. C. Greubel, Sep 28 2016 *)
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[CoefficientList[Series[(1 - E^x)*(-1 - E^x + 2*x)/(2*(2 - E^x)^2), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 25 2020 *)
-
r=1; s=2; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
A135150
A binomial recursion: a(n) = q(n) (see formula).
Original entry on oeis.org
0, 1, 7, 59, 577, 6435, 80731, 1126321, 17306899, 290514275, 5290386805, 103892269503, 2188786203451, 49246871008285, 1178620260610039, 29898497436003155, 801364442718809233, 22629823094599476315, 671564575318740405283, 20894818098241648524577, 680161672262047334987995
Offset: 1
- Benoit Cloitre, Binomial recursions, Pi and log2, in preparation 2007.
-
z[1] := x; z[n_] := 1 + Sum[(3 + Binomial[n, k])*z[k], {k, 1, n - 1}]; Table[
Coefficient[z[n], x, 0], {n, 1, 10}] (* G. C. Greubel, Sep 28 2016 *)
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(3 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x, 0], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[CoefficientList[Series[((-24 + 44*E^x - 46*E^(2*x))/(2 - E^x)^2 - 15*x + E^(5*x/2)*(52 + 15*Pi - 60*ArcSin[E^(x/2)/Sqrt[2]])/(2*(2 - E^x)^(5/2)))/75, {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 25 2020 *)
-
r=1; s=3; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
A132436
A binomial recursion: a(n) = p(n) (see comment).
Original entry on oeis.org
1, 1, 4, 20, 129, 1020, 9542, 103063, 1262134, 17279744, 261531315, 4335950346, 78146040374, 1521220672933, 31808447321848, 711019048106744, 16919695824732249, 427046133330613512, 11394750238551713066, 320486422239301377007, 9476411014096567341034
Offset: 1
-
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(-1 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[Simplify[CoefficientList[Series[1 + x + E^(x/2)*(2*ArcSin[E^(x/2)/Sqrt[2]] - 1 - Pi/2)/Sqrt[2 - E^x], {x, 0, nmax}], x] * Range[0, nmax]!]] (* Vaclav Kotesovec, Nov 25 2020 *)
-
r=1; s=-1; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
A132437
A binomial recursion: a(n) = q(n) (see comment).
Original entry on oeis.org
0, 1, 3, 15, 97, 767, 7175, 77497, 949047, 12993303, 196655437, 3260367539, 58761008087, 1143864229549, 23917992791139, 534642521054391, 12722568903456817, 321112383611040455, 8568150193087139231, 240986045600284560553, 7125677277725450247087
Offset: 1
-
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(-1 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x, 0], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
Rest[CoefficientList[Series[-2 - x + E^(x/2)*((4 + Pi)/2 - 2*ArcSin[E^(x/2) / Sqrt[2]]) / Sqrt[2 - E^x], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Nov 25 2020 *)
-
r=1; s=-1; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
Showing 1-5 of 5 results.
Comments