A135162 a(n) = 7^n - 5^n - 3^n + 2^n. Constants are the prime numbers in decreasing order.
0, 1, 19, 199, 1711, 13471, 101359, 743359, 5367871, 38381311, 272651599, 1928323519, 13596619231, 95666721151, 672114790639, 4717029615679, 33080299697791, 231867445524991, 1624598513486479, 11379820537307839, 79696895380235551, 558069016466824831, 3907436831415107119
Offset: 0
Examples
a(4) = 1711 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401-625-81+16 = 1711.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17,-101,247,-210).
Crossrefs
Programs
-
Magma
[7^n-5^n-3^n+2^n: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
-
Mathematica
Table[7^n-5^n-3^n+2^n,{n,0,30}] (* or *) LinearRecurrence[ {17,-101,247,-210},{0,1,19,199},30] (* Harvey P. Dale, Dec 13 2013 *) CoefficientList[Series[1/(1 - 7 x) - 1/(1 - 5 x) - 1/(1 - 3 x) + 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)
-
PARI
a(n) = 7^n - 5^n - 3^n + 2^n \\ Charles R Greathouse IV, Sep 30 2016
Formula
a(n) = 7^n - 5^n - 3^n + 2^n.
a(0)=0, a(1)=1, a(2)=19, a(3)=199, a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4). - Harvey P. Dale, Dec 13 2013
G.f.: 1/(1-7*x) - 1/(1-5*x) - 1/(1-3*x) + 1/(1-2 x). - Vincenzo Librandi, May 22 2014
E.g.f.: exp(7*x) - exp(5*x) - exp(3*x) + exp(2*x). - G. C. Greubel, Sep 30 2016
Extensions
More terms from Vincenzo Librandi, Dec 14 2010