cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135162 a(n) = 7^n - 5^n - 3^n + 2^n. Constants are the prime numbers in decreasing order.

Original entry on oeis.org

0, 1, 19, 199, 1711, 13471, 101359, 743359, 5367871, 38381311, 272651599, 1928323519, 13596619231, 95666721151, 672114790639, 4717029615679, 33080299697791, 231867445524991, 1624598513486479, 11379820537307839, 79696895380235551, 558069016466824831, 3907436831415107119
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2007

Keywords

Examples

			a(4) = 1711 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401-625-81+16 = 1711.
		

Crossrefs

Programs

  • Magma
    [7^n-5^n-3^n+2^n: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
    
  • Mathematica
    Table[7^n-5^n-3^n+2^n,{n,0,30}] (* or *) LinearRecurrence[ {17,-101,247,-210},{0,1,19,199},30] (* Harvey P. Dale, Dec 13 2013 *)
    CoefficientList[Series[1/(1 - 7 x) - 1/(1 - 5 x) - 1/(1 - 3 x) + 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *)
  • PARI
    a(n) = 7^n - 5^n - 3^n + 2^n \\ Charles R Greathouse IV, Sep 30 2016

Formula

a(n) = 7^n - 5^n - 3^n + 2^n.
a(0)=0, a(1)=1, a(2)=19, a(3)=199, a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4). - Harvey P. Dale, Dec 13 2013
G.f.: 1/(1-7*x) - 1/(1-5*x) - 1/(1-3*x) + 1/(1-2 x). - Vincenzo Librandi, May 22 2014
E.g.f.: exp(7*x) - exp(5*x) - exp(3*x) + exp(2*x). - G. C. Greubel, Sep 30 2016

Extensions

More terms from Vincenzo Librandi, Dec 14 2010