A135163 a(n) = 7^n - 5^n + 3^n - 2^n.
0, 3, 29, 237, 1841, 13893, 102689, 747477, 5380481, 38419653, 272767649, 1928673717, 13597673921, 95669893413, 672124323809, 4717058247957, 33080385660161, 231867703543173, 1624599287803169, 11379822860782197, 79696902351707201, 558069037383336933, 3907436894168837729
Offset: 0
Examples
a(4) = 1841 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and 2401-625+81-16 = 1841.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17,-101,247,-210).
Crossrefs
Programs
-
Magma
[7^n-5^n+3^n-2^n: n in [0..50]]; // Vincenzo Librandi, Dec 14 2010
-
Magma
I:=[0, 3, 29, 237]; [n le 4 select I[n] else 17*Self(n-1)-101*Self(n-2)+247*Self(n-3)-210*Self(n-4): n in [1..30]]; // Vincenzo Librandi, May 22 2014
-
Mathematica
CoefficientList[Series[1/(1 - 7 x) - 1/(1 - 5 x) + 1/(1 - 3 x) - 1/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 22 2014 *) LinearRecurrence[{17,-101,247,-210},{0,3,29,237},30] (* Harvey P. Dale, Sep 17 2016 *)
-
PARI
a(n) = 7^n - 5^n + 3^n - 2^n \\ Charles R Greathouse IV, Sep 30 2016
Formula
a(n) = 7^n - 5^n + 3^n - 2^n.
from Vincenzo Librandi, May 22 2014: (Start)
G.f.: 1/(1-7*x) - 1/(1-5*x) + 1/(1-3*x) - 1/(1-2*x).
a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4) for n>3. (End)
E.g.f.: exp(7*x) - exp(5*x) + exp(3*x) - exp(2*x). - G. C. Greubel, Sep 30 2016
Extensions
More terms from Vincenzo Librandi, Dec 14 2010
Comments